SHORING PLAN COASTLINE DR 12-INCH WATERLINE IMPROVEMENT

REV #2

DESIGN CALCULATIONS May 1, 2025

PREPARED BY: SCOTT F CANNON, PE

MZB ENGINEERING, INC

TEL:949.254.4792

engineering@mzbinc.com

www.mzbinc.com

Table of Contents

1.	Drawings	1-6
2.	Shoring Calculations	7-54
3.	Rev 1 Calculations	55
4.	Rev 2 Calculations	56-61
5	Reference Documents	62-74

MZB ENGINEERING, INC

TEL:949.254.4792

engineering@mzbinc.com

www.mzbinc.com

Mdy 1, 2023

PLANS FOR CONSTRUCTION ON COASTLINE ROAD

IN LOS ANGELES COUNTY

12-INCH WATERLINE

SHORING PLAN

REVISION 2

INDEX TO PLANS

SHEET NO.	TITLE
1	COVER
2	SHORING NOTES
3	PLAN VIEW
4	PLAN VIEW
5	PLAN VIEW
6	SECTION VIEW

LOCATION MAP

	LCCC KEV. DAIE	Д Р У	UAIE	DESCRIP HON	/
(S: CANNON	0	0 3-26-25	RFC SUBMITTAL	
) 	DRAWN BY:	-	4-17-25	DRAWN BY: 1 4-17-25 LACPW COMMENTS DATED 4/15/25	CI E OF
7 N N N N N N N N N N N N N N N N N N N	S. CANNON	2	2 4-30-25	LACPW COMMENTS DATED 4/29/25	VIL CALIF
	SCALE:				ORNIA
	NIMOLES SE				//

MZB	FNGINEERIN	1192 ATHLONE
COASTLINE DR SHORING PLAN		COVER

SHEET NUMBER:

OF 6 SHEETS

- 1. ALL EXCAVATIONS SHALL BE CONSTRUCTED AND MAINTAINED IN ACCORDANCE WITH OSHA CFR 29, PART 1926, SUBPART P, AND CAL/OSHA SAFETY ORDERS TITLE 8, SECTION 1504, AND 1539-1547.
- THE DESIGN OF THIS EXCAVATION IS IN ACCORDANCE WITH THE 2014 CALTRANS STANDARD SPECIFICATIONS AND THE 2011 CT TRENCHING AND SHORING MANUAL.
- 3. THE SURCHARGE SETBACK TABLE LIMIT FOR HORIZONTAL SHORING LOADS TO 72 PSF FOR 1 TO 10 FT AND 50 PSF FOR 10 20 FT.

LOCATION AND PROTECTION OF EXISTING UTILITIES:

THE CONTRACTOR SHALL VERIFY THE LOCATION OF ALL EXISTING UTILITIES, OTHER OBSTACLES, DIMENSIONS, OFFSETS, ELEVATIONS AND CONDITIONS IN THE FIELD PRIOR TO STARTING ANY WORK. ALL EXISTING UTILITIES SHOWN ON THE CONTRACT PLANS WITHIN THE WORK ZONE SHALL BE POSITIVELY IDENTIFIED PRIOR TO STARTING WORK. THE CONTRACTOR IS RESPONSIBLE TO POTHOLE ALL UTILITIES (AS NEEDED) BEFORE SHORING WALL CONSTRUCTION IS TO BEGIN. THE ENGINEER SHALL BE NOTIFIED OF ANY DISCREPANCIES OR INCONSISTENCIES BEFORE PROCEEDING FURTHER WITH THE WORK.

SURVEYING AND GROUND ELEVATION INFORMATION:

EXISTING GROUND ELEVATIONS AND CONSEQUENTIAL ELEVATION HEIGHTS HAVE BEEN DETERMINED BASED ON TOPOGRAPHICAL INFORMATION PROVIDED BY THE PLANS AND OR ACTUAL FIELD DATA.

- A COMPETENT PERSON IS CAPABLE OF IDENTIFYING EXISTING AND PREDICTABLE HAZARDS IN THE SURROUNDINGS, OR WORKING CONDITIONS WHICH ARE UNSANITARY, HAZARDOUS, OR DANGEROUS TO EMPLOYEES AND WHO HAS AUTHORIZATION TO TAKE PROMPT CORRECTIVE MEASURES TO ELIMINATE THEM.
- BEFORE COMMENCING ANY EXCAVATION, THE CONTRACTOR SHALL OBTAIN UNDERGROUND SERVICE ALERT (USA) INQUIRY I.D. NUMBER. A MINIMUM OF 3 DAYS SHALL BE ALLOWED AFTER THE I.D. NUMBER IS OBTAINED AND BEFORE THE EXCAVATION WORK IS STARTED TO NOTIFY UTILITY OWNERS. IF THE UTILITY OWNER IS THE CITY, A CONFIRMATION NUMBER INDICATING THE CITY HAS BEEN NOTIFIED SHALL BE OBTAINED BY USA AND/OR THE CONTRACTOR FROM THE APPROPRIATE CITY DEPARTMENT. THE I.D. NUMBER TOGETHER WITH THE DATE ACQUIRED SHALL BE REPORTED TO THE INSPECTOR WHEN CALLING FOR INSPECTION. USA I.D. NUMBERS WILL NOT BE GIVEN MORE THAN TEN (10) WORK DAYS BEFORE STARTING EXCAVATION WORK.
- THE CONTRACTORS COMPETENT PERSON SHALL BE ON-SITE OBSERVING THE EXCAVATION PROCESS AND SHALL BE THE RESPONSIBLE PARTY IN THE DETERMINATION OF THE SOIL TYPE EXPOSED IN THE EXCAVATION WALLS. IF THE SOIL TYPE ENCOUNTERED IS DIFFERENT THAN THAT SPECIFIED ON THE PLANS. THE DESIGN ENGINEER MUST BE NOTIFIED.
- THE COMPETENT PERSON SHALL INSPECT THE TRENCH OR EXCAVATION AT THE BEGINNING OF EACH SHIFT PRIOR TO WORKERS ENTERING THE TRENCH OR EXCAVATION AND/OR IF WEATHER HAS CHANGED OR EFFECTED THE WORK AREA.

ENVIRONMENTAL/SWPPP COMPLIANCE:

DESIGN OF EXCAVATIONS IS BASED ON ASSUMPTIONS THAT SOIL PROPERTIES AND GROUND CONDITIONS REMAIN CONSTANT THROUGH THE LIFE OF THE EXCAVATION, WATER CAN EFFECT THE STRENGTH OF SOILS AND GREAT CARE SHOULD BE TAKEN TO PREVENT CHANGES FROM EXISTING SOIL CONDITIONS. SLOPES MUST BE PROTECTED FROM EXCESSIVE SOIL SATURATION AND EROSION DURING CONSTRUCTION. WATER PONDING IN THE BASE OF EXCAVATIONS IS UNACCEPTABLE AND SHOULD BE DIVERTED OR REMOVED. PROPER SWPPP AND BMP MEASURES SHALL BE USED TO PREVENT ENVIRONMENTAL INDUCED SLOPE INSTABILITY.

CAL/OSHA REQUIREMENTS:

- A CAL/OSHA EXCAVATION PERMIT MUST BE OBTAINED PRIOR TO ANY EXCAVATION.
- 2. A COPY OF THIS SHORING PLAN MUST BE AT THE JOB SITE DURING CONSTRUCTION.
- INGRESS AND EGRESS TO THE EXCAVATION SHALL CONFORM TO ALL OSHA REQUIREMENTS INCLUDING: HANDRAILS, LADDER ACCESS AND FALL PROTECTION AS REQUIRED. IN ADDITION TO OSHA REQUIREMENTS, OPEN TRENCHES SHALL BE PROTECTED BY PROTECTIVE & SECURITY FENCING OR PLATES WITH LACDPW STANDARD PLAN 6008.
- CONTINGENCY PLANS FOR EMERGENCY SITUATIONS SHALL BE ADDRESSED IN JHA.
- 5. LADDERS TO BE PLACED EVERY 25 FEET OF WORKING AREA PER OSHA REQUIREMENTS.

- 1. CONTACT THE DESIGN ENGINEER IF EXCAVATION SHOWS SIGNS OF SLOUGHING, SWELLING OR PUMPING.
- 2. CAUTION SHALL BE TAKEN WHEN EXCAVATIONS ARE ADJACENT TO TRAFFIC AND THE TRAVELING PUBLIC

CONTROLLING FIELD DIMENSIONS

- THE FIELD SUPERINTENDENT WILL VERIFY ALL CONTROLLING FIELD DIMENSIONS BEFORE ORDERING, FABRICATING, OR INSTALLING SHORING. UPON APPROVAL BY THE DESIGN ENGINEER DIMENSIONS OF THE SHORING WILL BE ADJUSTED TO FIT THE ACTUAL DIMENSIONS
- 2. IF AT ANY POINT THE EXCAVATION EXCEEDS THE DEPTH SHOWN ON THE PLANS BY MORE THAN 1 FT. NOTIFY THE DESIGN ENGINEER

SOIL LAYER DESCRIPTIONS:

THE FOLLOWING SOIL DESCRIPTIONS ARE ASSUMED TO BE PRESENT DURING EXCAVATION. IF SOILS DIFFER FROM THOSE DESCRIBED BELOW, STOP THE EXCAVATION AND CONSULT WITH THE DESIGN ENGINEER.

SOIL TYPES & DESCRIPTIONS: 0' TO 6' - SAND, SILTY 6' TO 12' - SHALE CLAYEY) 12' TO BELOW - SANDSTONE

DESIGN PARAMETERS:

EXCAVATION SLOPE DESIGN BASED ON BORING B-1 TO B-7 OF THE CONTRACT PLANS (SHEET 9 OF 12).

SOIL PARAMETERS:

0' TO 6' y = 112 PCF $\Phi = 37^{\circ}$ $\Phi = 31^{\circ}$ Su = 0 PSFSu = 0 PSF(Ka = 0.31)Ka = 0.25 Kw = 36.6 PCFKw = 27.8 PCF

DESIGN SURCHARGE PARAMETERS:

IF K-RAIL IS LESS THAN 2 FT FROM TOP OF SLOPE IT MUST BE PINNED. SEE 2024 CALTRANS STANDARD PLAN T3B.

2. K-RAIL MAY NOT BE PLACED CLOSER THAN 3" FROM TOP OF SLOPE. (200PSF)

- 3. SLOPES WERE DESIGNED WITH A HS20-44 TRAFFIC SURCHARGE (300PSF) PLACED 2 FT FROM TOP OF SLOPE OR AS SHOWN IN THE SURCHARGE TABLE(S) IN THESE PLANS.
- 4. FOR SURCHARGE OFFSETS REFER TO "ASSUMED SURCHARGES & MIN. OFFSETS" TABLES ON SECTION VIEWS.
- 5. IF HIGHER GROUND PRESSURE IS ANTICIPATED, CONSULT WITH THE DESIGN ENGINEER,

ROAD PLATES:

PLATES ARE A MINIMUM ASTM A36 MIN Fy=36 KSI.

- TRENCH PLATE INSTALLATION INCLUDING MIX RAMPING WITHIN THE CITY OF LOS ANGELES AND ALL PAVEMENT REPAIRS SHALL BE IN ACCORDANCE LAPW STANDARD S-601-3.
- THERE SHALL BE NO PAINT ON THE SURFACE OF THE ROAD PLATES. ALL TOPS OF T HE ROAD PLATES MUST BE FLUSH.
- DESIGN IS BASED ON ALLOWABLE BENDING STRENGTH.
- REFER TO TRENCH SHORING PRODUCT DATA.

84327

Exp. 09-30-25

OF CAL'

DATED

AWIN

ENGINEERING INC 1192 ATHLONE LANE CORONA, CA 92882

Ш

 \Box

Ż

IORIN

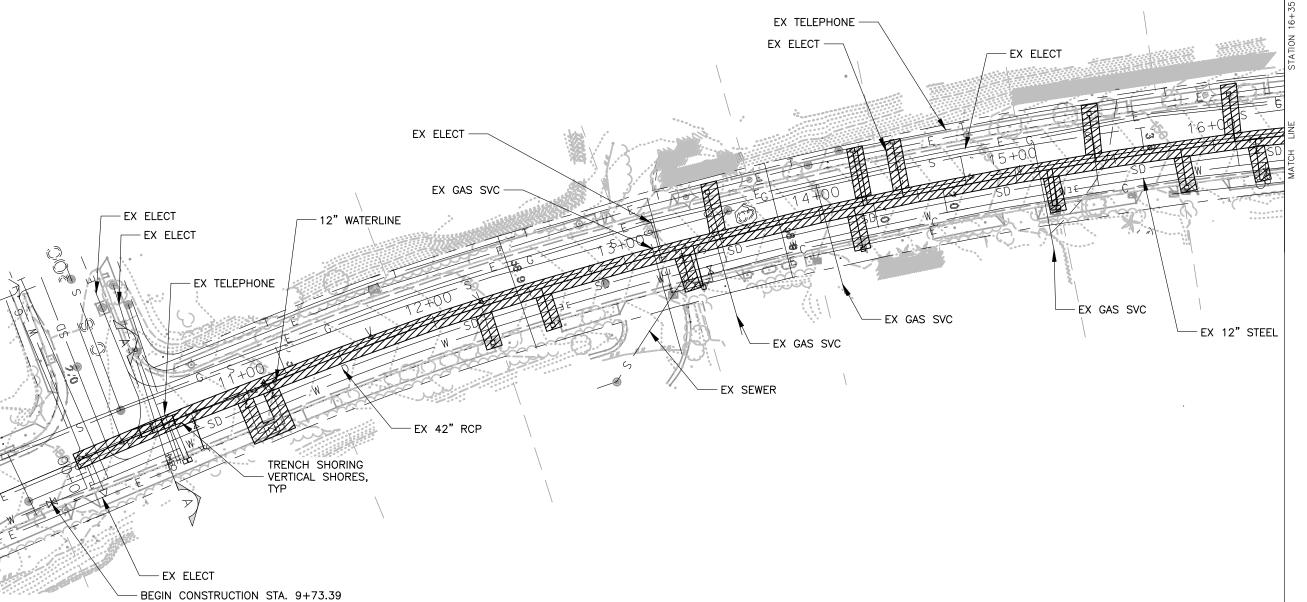
K

શ્ર

 \exists α

GENE

SHEET NUMBER:


SHEETS

OF 6

 \bigcirc

Underground Service Alert Call: TOLL FREE 1-800-422-4133

TWO WORKING DAYS BEFORE YOU DIG

PLAN VIEW
SCALE: ¼" - 1'-0"

LEGEND:

LIMITS OF SHORING

NOTES:

1. CONTRACTOR TO VERIFY ALL UTILITY LOCATIONS.

2. VERTICAL RAILS ARE FOR LAYOUT ONLY.
3. REFER TO THE COASTLINE DRIVE TRAFFIC CONTROL PLAN.
4. LIMITS OF SHORING DESIGN ARE FROM STATION 9+73.39 TO

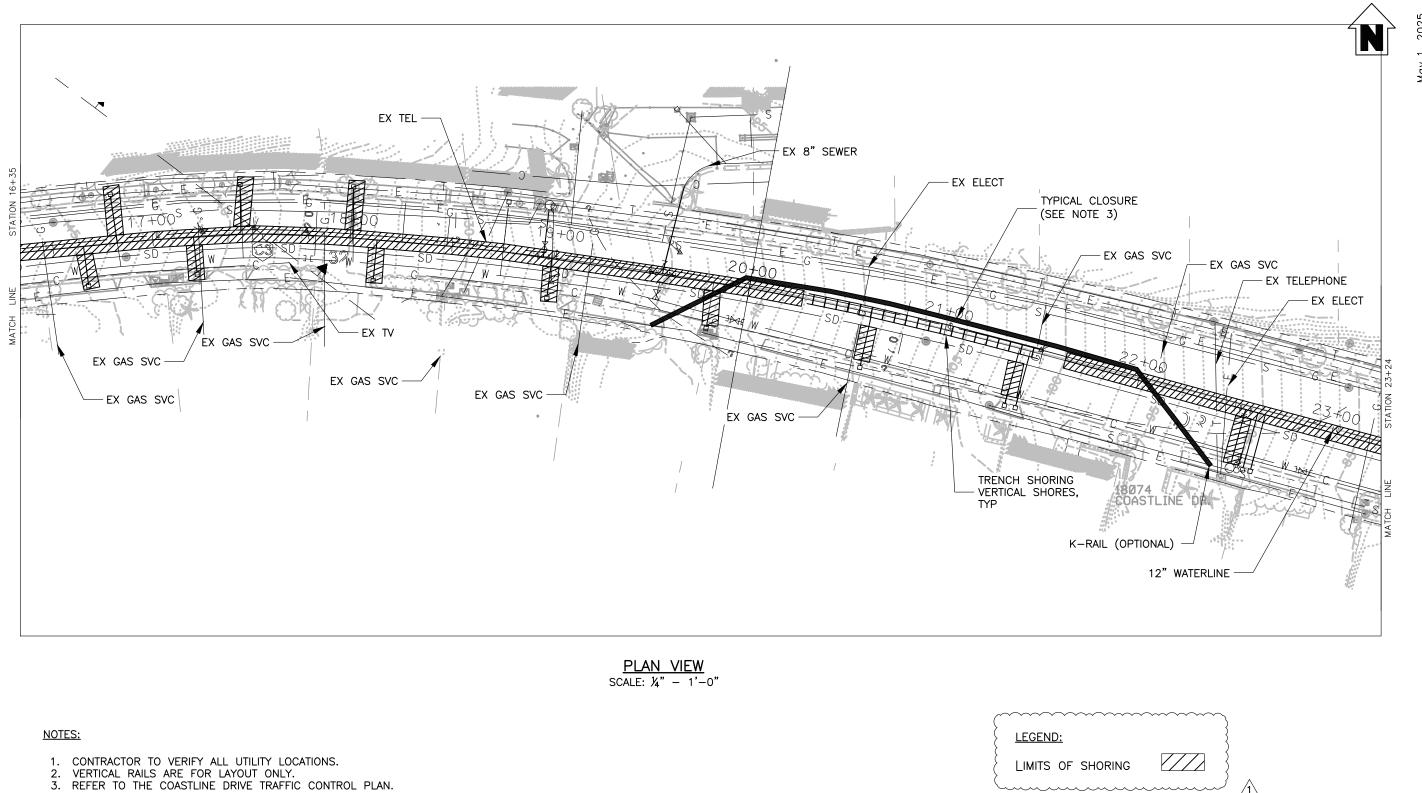
30+08.61.

MMENTS DATED .

ENGINEERING INC. 1192 ATHLONE LANE CORONA, CA 92882 (949) 254-4792

PLAN

SHORING


VIEW

PLAN

SHEET NUMBER:

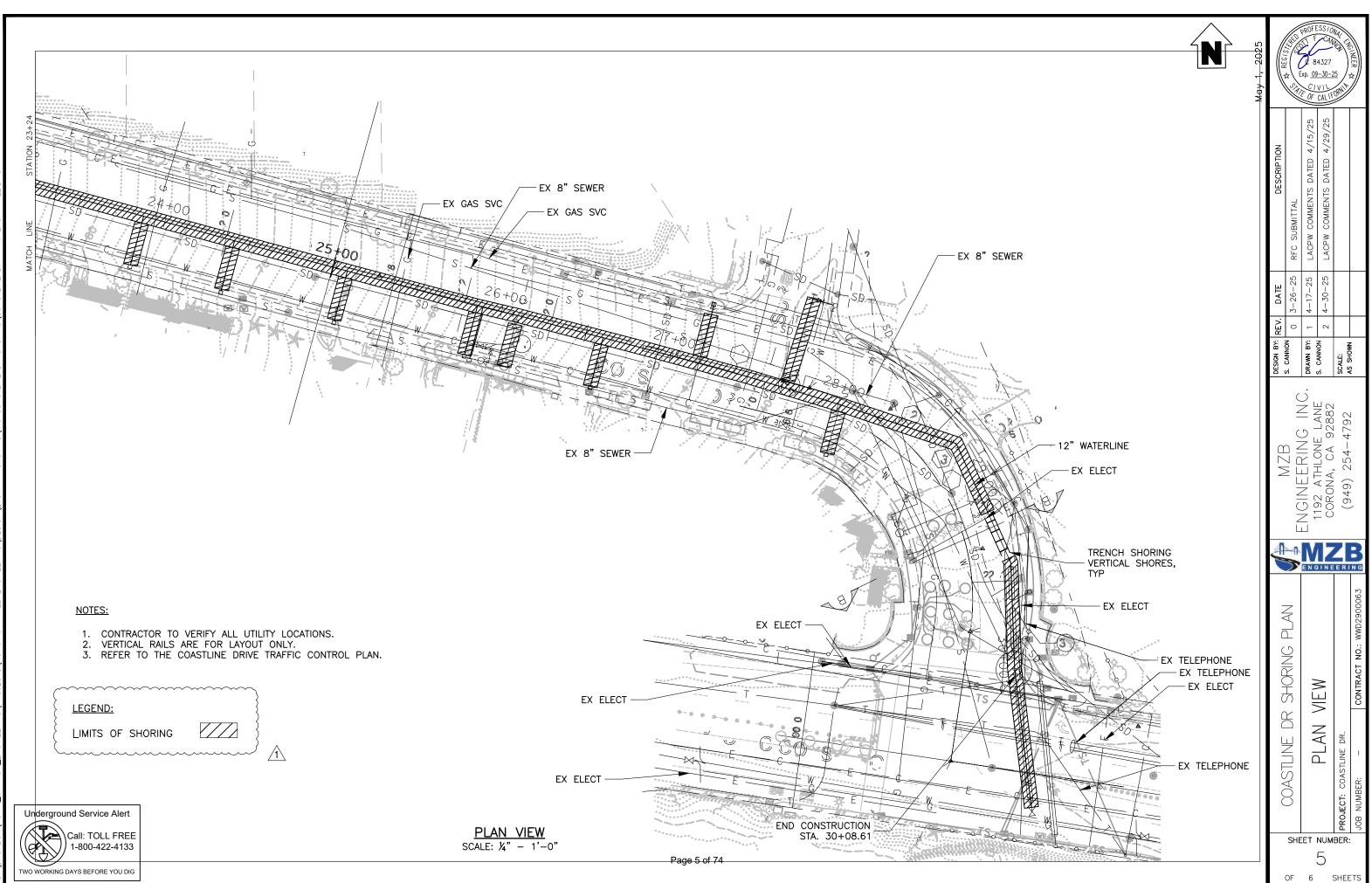
SHEETS

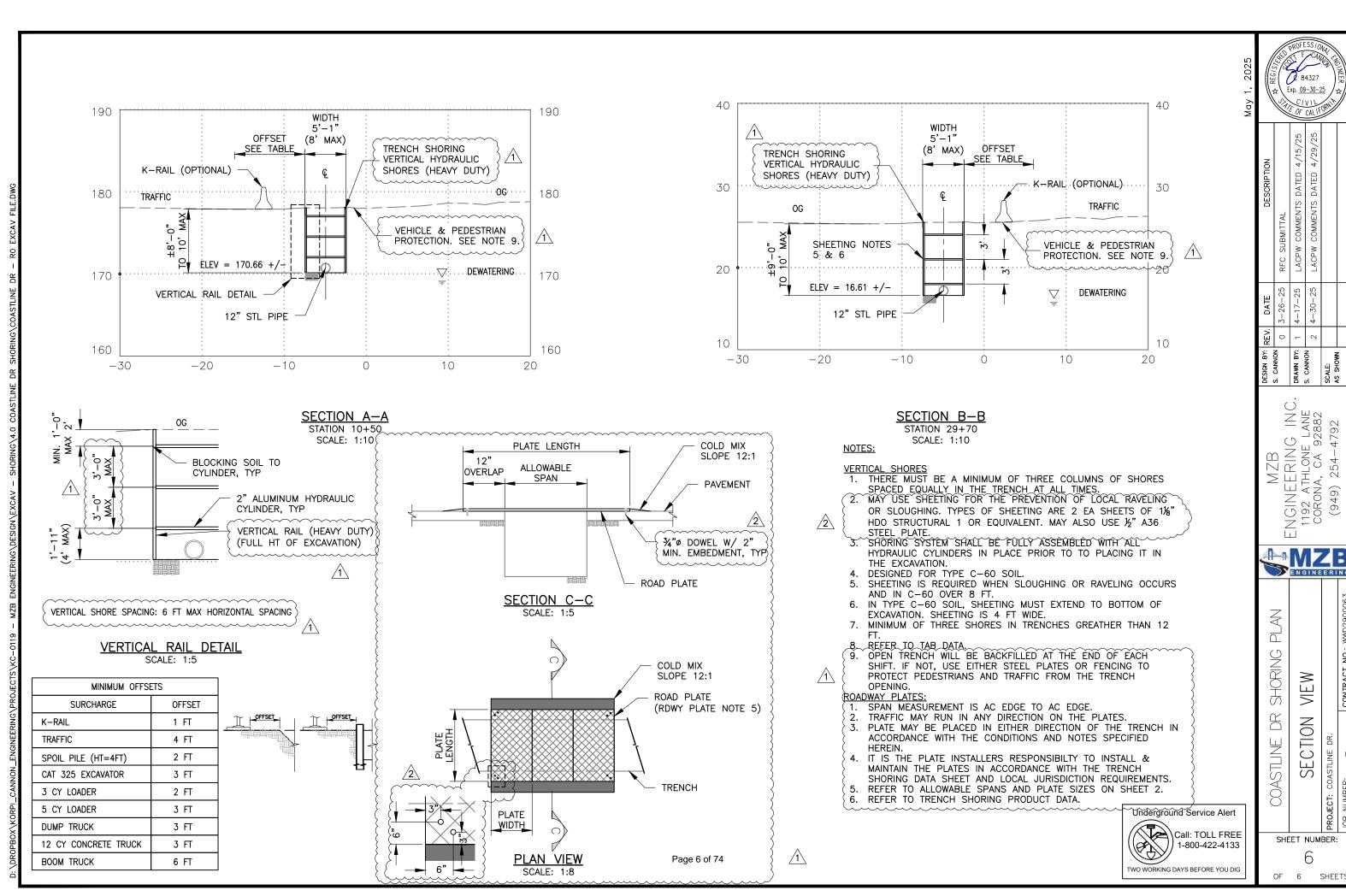
OF 6

DATED

ENGINEERING INC. 1192 ATHLONE LANE CORONA, CA 92882 (949) 254-4792

PLAN

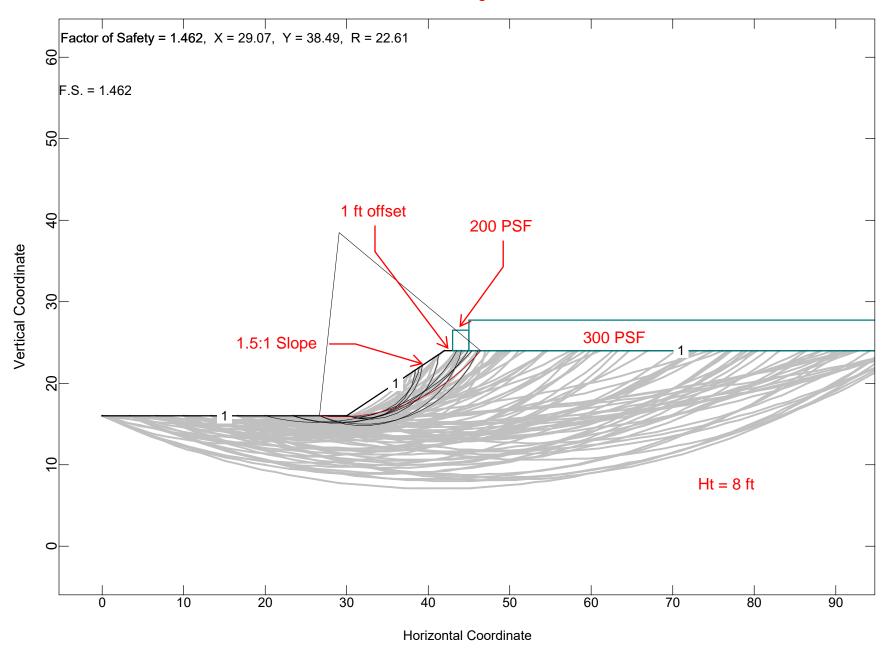

SHORING


VIEW

PLAN

SHEET NUMBER:

OF 6 SHEETS


Calculations

MZB ENGINEERING, INC

<u>TEL:949.254.4792</u> <u>engineering@mzbinc.com</u>

www.mzbinc.com

STABLPro for Windows, Version 2015.4.5

Upgraded from: FHWA-PCSTABLE

Serial Number: 357267753

--Slope Stability Analysis-Simplified Janbu, Simplified Bishop
or Spencer Method of Slices

This program is licensed to :

Korpi Cannon Engineering PLLC Las Vegas, NV, USA

Path to file locations

D:\Dropbox\Korpi_Cannon_Engineering\Projects\KC-0119 - MZB Engineering\Design\Excav

- Shoring\4.0 Coastline Dr\Design\

Name of input data file : Sect A Excav.sl4d
Name of output file : Sect A Excav.sl4o
Name of plot output file : Sect A Excav.sl4p

Time and Date of Analysis

Date: March 26, 2025 Time: 13:23:25

1

PROBLEM DESCRIPTION New Slope

BOUNDARY COORDINATES

3 Top Boundaries
3 Total Boundaries

Boundary No.	X-Left ft.	Y-Left ft.	X-Right ft.	Y-Right ft.	Soil Type Below Bnd
1	0.00	16.00	30.00	16.00	1
2	30.00	16.00	42.00	24.00	1
3	42.00	24.00	100.00	24.00	1

1

ISOTROPIC SOIL PARAMETERS

1 Type(s) of Soil

Soil	Total	Saturated	Cohesion	Friction	Pore	Pressure	Piez.
Type	Unit Wt.	Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No.	pcf	pcf	psf	(deg)	Param.	psf	No.
1	118.0	118.0	0.0	37.0	0.00	0.0	0

1

BOUNDARY LOAD(S)

2 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	ft.	ft.	psf	(deg)
1	43.00	45.00	200.0	0.0
2	45.00	100.00	300.0	0.0

1

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

100 Trial Surfaces Have Been Generated.

10 Surfaces Initiate From Each Of 10 Points Equally Spaced Along The Ground Surface Between X = 0.00 ft.

and X = 30.00 ft.

Each Surface Terminates Between X = 37.00 ft. and X = 100.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00 ft.

1.60 ft. Line Segments Define Each Trial Failure Surface.

Restrictions Have Been Imposed Upon The Angle Of Initiation. The Angle Has Been Restricted Between The Angles Of -25.0 And 0.0 deg.

1

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

st * Safety Factors Are Calculated By The Modified Bishop Method st *

Failure Surface Specified By 15 Coordinate Points

Point	X-Surf	Y-Surf
No.	ft.	ft.
1	26.67	16.00
2	28.26	15.89
3	29.86	15.89
4	31.46	16.00
5	33.04	16.22
6	34.61	16.56
7	36.14	17.01
8	37.65	17.56
9	39.10	18.22
10	40.51	18.98
11	41.86	19.84
12	43.15	20.79
13	44.37	21.83
14	45.50	22.95
15	46.43	24.00

Circle Center At X = 29.1; Y = 38.5 and Radius, 22.6

*** **1.462** ***

Individual data on the 18 slices

			Water	Water	Tie	Tie	Earth	quake	
			Force	Force	Force	Force	For	rce	Surcharge
Slice	Width	Weight	Тор	Bot	Norm	Tan	Hor	Ver	Load
No.	Ft	Lbs							
1	1.6 6	0.11E+02	0.00E+00						
2	1.6 0	0.21E+02	0.00E+00						
3	0.1 6	0.18E+01	0.00E+00						
4	1.5 6	9.93E+02	0.00E+00						
5	1.6 0	0.26E+03	0.00E+00						
6	1.6 6	0.40E+03	0.00E+00						
7	1.5 6	0.51E+03	0.00E+00						
8	1.5 6	0.59E+03	0.00E+00						
9	1.5 6	0.64E+03	0.00E+00						
10	1.4 6	0.65E+03	0.00E+00						
11	1.4 6	0.65E+03	0.00E+00						
12	0.1 6	0.66E+02	0.00E+00						
13	1.0 0	0.44E+03	0.00E+00						
14	0.1 0	0.57E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.30E+02
15	1.2 0	0.39E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.24E+03
16	0.6	0.14E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.13E+03
17	0.5 6	0.77E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.15E+03
18									0.28E+03

Failure Surface Specified By 9 Coordinate Points

Point No.	X-Surf ft.	Y-Surf ft.
1	30.00	16.00
2	31.60	15.90
3	33.18	16.12
4	34.69	16.65
5	36.06	17.48
6	37.23	18.57
7	38.15	19.88

8	38.80	21.34
9	38.93	21.95

Circle Center At X = 31.3; Y = 23.8 and Radius, 7.9

*** **1.547** ***

1 Failure Surface Specified By 17 Coordinate Points

Point	X-Surf	Y-Surf
No.	ft.	ft.
1	23.33	16.00
2	24.88	15.61
3	26.46	15.34
4	28.06	15.21
5	29.66	15.22
6	31.25	15.36
7	32.83	15.63
8	34.38	16.03
9	35.89	16.55
10	37.35	17.21
11	38.75	17.98
12	40.08	18.87
13	41.33	19.86
14	42.50	20.96
15	43.57	22.15
16	44.54	23.42
17	44.90	24.00

Circle Center At X = 28.8; Y = 34.3 and Radius, 19.1

*** **1.**586 ***

Failure Surface Specified By 16 Coordinate Points

Point	X-Surf	Y-Surf
No.	ft.	ft.
1	23.33	16.00
2	24.87	15.55

```
26.44
                        15.26
 4
           28.04
                        15.11
 5
           29.64
                        15.12
6
           31.23
                        15.28
7
           32.80
                        15.59
8
           34.33
                        16.05
9
                        16.66
           35.81
           37.23
10
                        17.40
           38.56
                        18.28
11
           39.81
                        19.28
12
13
           40.96
                        20.40
14
           41.99
                        21.62
15
           42.91
                        22.93
           43.51
                        24.00
16
```

Circle Center At X = 28.8; Y = 31.8 and Radius, 16.7

*** **1.643** ***

1

Failure Surface Specified By 19 Coordinate Points

Point	X-Surf	Y-Surf
No.	ft.	ft.
1	20.00	16.00
2	21.56	15.65
3	23.14	15.40
4	24.73	15.25
5	26.33	15.20
6	27.93	15.26
7	29.53	15.41
8	31.10	15.67
9	32.66	16.03
10	34.20	16.48
11	35.70	17.04
12	37.16	17.68
13	38.58	18.42
14	39.95	19.25
15	41.27	20.16
16	42.52	21.16
17	43.71	22.23
18	44.82	23.37
19	45.36	24.00

Circle Center At X = 26.3; Y = 40.3 and Radius, 25.1

*** **1.646** ***

Failure Surface Specified By 16 Coordinate Points

Point No.	X-Surf ft.	Y-Surf ft.	
1	26.67	16.00	
2	28.19	15.50	
3	29.75	15.17	
4	31.34	15.00	
5	32.94	15.00	
6	34.54	15.16	
7	36.10	15.49	
8	37.62	15.98	
9	39.09	16.63	
10	40.48	17.42	
11	41.77	18.36	
12	42.96	19.43	
13	44.04	20.61	
14	44.98	21.90	
15	45.79	23.29	
16	46.11	24.00	
Circle Cer	nter At X =	32.2 ; Y =	30.3

Circle Center At X = 32.2; Y = 30.3 and Radius, 15.3

*** **1.684** ***

1 Failure Surface Specified By 9 Coordinate Points

Point No.	X-Surf ft.	Y-Surf ft.
1	30.00	16.00
2	31.58	15.72
3	33.17	15.80
4	34.72	16.22
5	36.13	16.96
6	37.35	18.00
7	38.32	19.27

8 9	38.99 39.30	20.73 22.20			
Circle Center	At X =	32.0 ; Y =	23.0	and Radius,	7.3
***	1.704	***			

Failure Surface Specified By 11 Coordinate Points

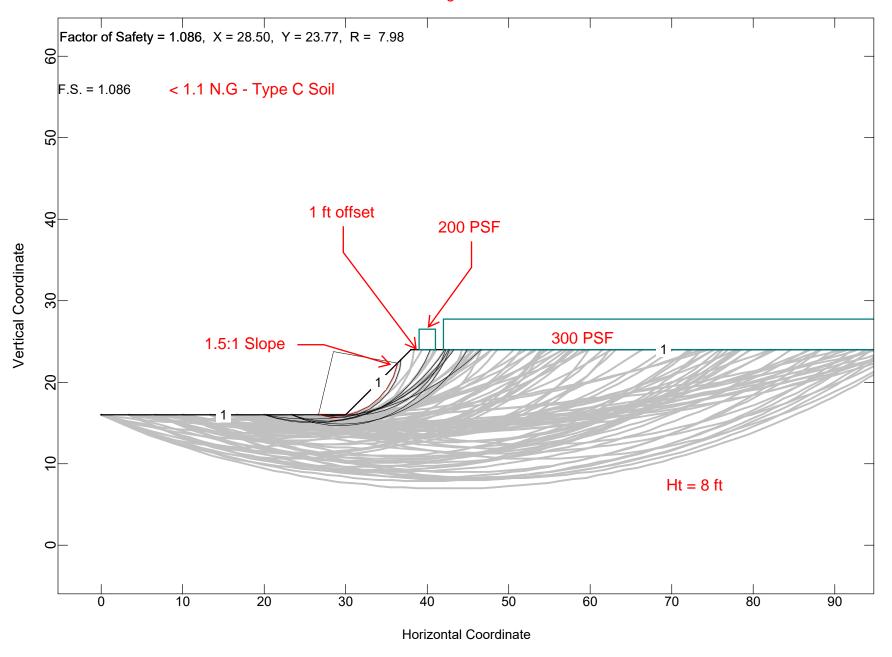
Point No.	X-Surf ft.	Y-Surf ft.	
1 2	30.00 31.56	16.00 15.65	
3	33.16	15.60	
4	34.74	15.84	
5	36.25	16.37	
6	37.64	17.16	
7	38.86	18.20	
8	39.87	19.44	
9	40.63	20.85	
10	41.11	22.38	
11	41.26	23.50	

1 Failure Surface Specified By 15 Coordinate Points

Point No.	X-Surf ft.	Y-Surf ft.
1	26.67	16.00
2	28.15	15.41
3	29.70	15.01
4	31.29	14.82
5	32.89	14.82
6	34.48	15.04
7	36.02	15.45
8	37.50	16.06

```
38.89 16.85
  9
  10
           40.17
                    17.81
  11
           41.32
                     18.93
  12
           42.31
                     20.19
  13
           43.13
                     21.56
  14
           43.78
                     23.02
                      24.00
  15
            44.06
Circle Center At X = 32.0; Y = 27.3 and Radius, 12.5
     ***
            1.755 ***
```

Failure Surface Specified By 9 Coordinate Points


Point No.	X-Surf ft.	Y-Surf ft.		
1	30.00	16.00		
2	31.57	15.69		
3	33.17	15.77		
4	34.69	16.25		
5	36.06	17.09		
6	37.17	18.24		
7	37.96	19.63		
8	38.39	21.17		
9	38.40	21.60		
Circle Center	At X =	32.0 ; Y =	22.1	and Radius,

6.4

*** 1.766 ***

1 Υ X I S F T Α 0.00 12.50 25.00 37.50 50.00 62.50 0.00 +-----+ Χ

		-	• • • •
	12.50	+	
		_	
		_	••••
		_	• • • • •
		-	
		-	5
		-	53
Α	25.00	+	3.
		-	31
		-	3*
		-	31
		-	41.
		-	611.
Χ	37.50	+	61220
		-	631822
		-	6138*
		-	6133/1
		_	111/2
		_	
I	50.00	+	
		_	
		_	
		_	
		_	• • • • • • • • • • • • • • • • • • • •
		_	• • • • • • • • • • • • •
S	62.50	+	• • • • • • • • • • • •
,	02.50	_	• • • • • • • • • • • •
			• • • • • • • • • • •
		-	• • • • • • • •
		-	• • • • • • • • • • • • • • • • • • • •
		-	• • • • • • • • •
		-	• • • • • • • • •
	75.00	+	• • • • • • • •
		-	• • • • • • • •
		-	• • • • • • • • •
		-	• • • • • • •
		-	• • • • • •
		-	• • • • •
F	87.50	+	• • • • •
		-	• • • •
		-	••••
		-	••••
		-	• • •
		-	• •
Т	100.00	+	*2/

Soil

							Unit					
Bore							Weight	Friction				Kw=ka*y
Location	N field	EH	CR	CS	СВ	N60	(y)	Angle	Soil	45-ф/2	ka	(pcf)
B-1	22	0.7	0.75	1	1.05	20	119	32	Type C	29	0.31	36.56
B-2	38	0.7	0.75	1	1.05	35	118	37	Type C	26.5	0.25	29.33
B-3	53	0.7	0.75	1	1.05	49	117	38	Type B	26	0.24	27.83
B-4	14	0.7	0.75	1	1.05	13	109	31	Type C	29.5	0.32	34.89
B-5	36	0.7	0.75	1	1.05	33	112	37	Type C	26.5	0.25	27.84
B-6	111	0.7	0.75	1	1.05	102	126	41	Type B	24.5	0.21	26.17
B-7	18	0.7	0.75	1	1.05	17	99	31	Type C	29.5	0.32	31.69

N60=(Nfield x EH x CR x CS x CB)/0.6

Boussinesq Lateral Earth Pressure

Coastline Section A

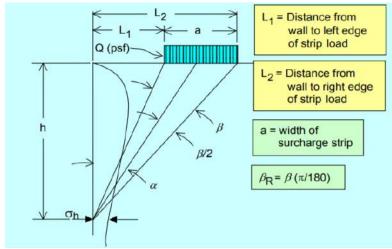
Date: 3/26/2025

Design values per CALTRANS 2015 Standard Specs

& 2011 Trenching and Shoring Manual (Revision 1, August 2011)

Sheet 1 of 3

Shoring & Surcharge Parameters


Shoring Depth = h =	10.0 ft
Offset Distance = L_1 =	4.0 ft
Total Length = L_2 =	19.0 ft
Strip Width = a =	15.0 ft
Surcharge Pressure = Q =	300 psf

TRAFFIC

Soil Parameters

Unit Weight = λ =	99 pcf
Cohesion = C =	0 psf
Friction Angle = ϕ =	31.0°

Note to user: Spreadsheet only works for shoring < 49.9ft.

Results Summary

The maximum total lateral pressure acting on the shoring is 438.84psf and occurs 10ft from the top of shoring.

The maximum lateral soil pressure acting on the shoring is 316.9psf and occurs 10ft from the top of shoring.

The maximum lateral surcharge pressure acting on the shoring is 168.83psf and occurs 4.6ft from the top of shoring.

Sample Calculation at h = 10ft

Rankine's Active Earth Pressure Coefficient =
$$K_a = \tan^2(45^\circ - (\phi/2))$$

= $\tan^2(45^\circ - (31^\circ/2))$
= 0.32

[Trenching and Shoring Manual, Eq. 4-9]

Lateral Pressure Due to Soil =
$$\sigma_{h(Soil)}$$
 = $(\lambda \times h \times K_a)$ - $(2 \times C \times Sqrt(K_a))$
= $(99pcf \times 10ft \times 0.32)$ - $(2 \times Opsf \times Sqrt(0.32))$
= 316.90 psf

[Trenching and Shoring Manual, Eq. 4-33]

Lateral Pressure Due to Surcharge =
$$\sigma_{h(Surcharge)}$$
 = $(2Q/\pi) \times [\beta_R - (Sin(\beta) \times Cos(2\alpha))]$
= $(2 \times 300 \text{ psf/}\pi) \times [0.71 \text{ Rad} - (Sin(40.4^\circ) \times Cos(2 \times 42^\circ))]$
= 121.94 psf

Page 21 of 74

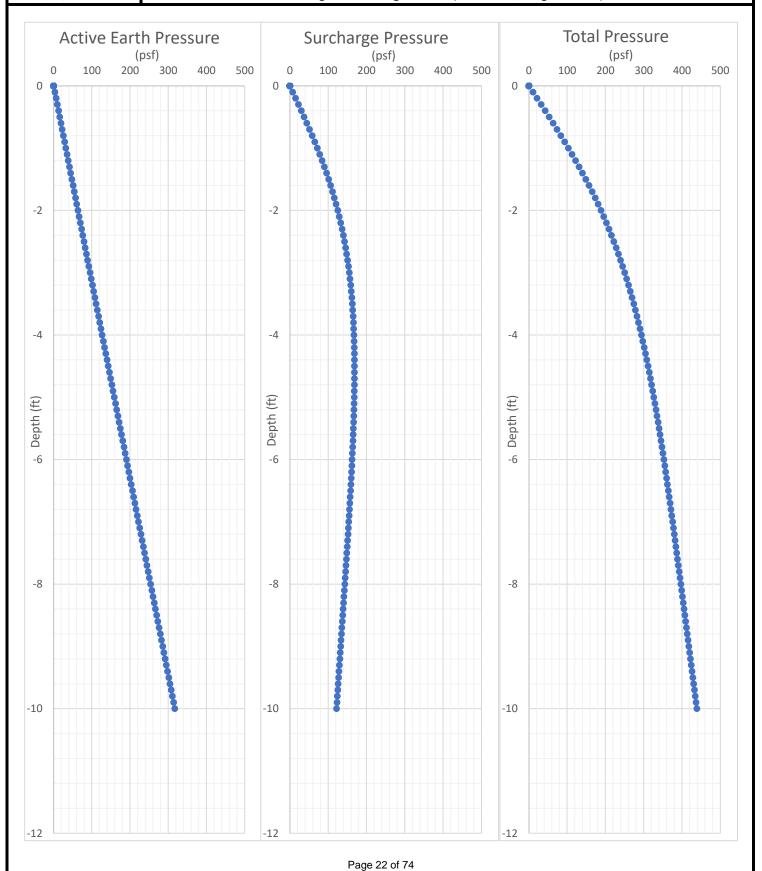
[Trenching and Shoring Manual, Eq. 4-67]

Total Lateral Pressure =
$$\sigma_{h(Total)}$$
 = $\sigma_{h(Soil)}$ + $\sigma_{h(Surcharge)}$
= 316.9psf + 121.94psf
= 438.84 psf

E Agua Harbor Way

9608 Aqua Harbor Way Las Vegas. NV. 89178 (702) 808-1295

Boussinesq Lateral Earth Pressure


Coastline Section A

Date: 3/26/2025

Design values per CALTRANS 2015 Standard Specs

& 2011 Trenching and Shoring Manual (Revision 1, August 2011)

Sheet 2 of 3

9608 Aqua Harbor Way Las Vegas. NV. 89178 (702) 808-1295

Boussinesq Lateral Earth Pressure

Coastline Section A

Date: 3/26/2025

Design values per CALTRANS 2015 Standard Specs

& 2011 Trenching and Shoring Manual (Revision 1, August 2011)

Sheet 3 of 3

Detailed Results Summary

h	$\boldsymbol{\theta_1}$	$\boldsymbol{\theta_2}$	β	$oldsymbol{eta_R}$	α	$\sigma_{h(Soil)}$	$\sigma_{h(Surcharge)}$	$\sigma_{h(Total)}$
0.0 ft	-	-	-	-	-	0.0 psf	0.0 psf	0.0 psf
1.0 ft	14.0°	3.0°	11.0°	0.19 Rad	81.5°	31.7 psf	71.7 psf	103.3 psf
2.0 ft	26.6°	6.0°	20.6°	0.36 Rad	73.7°	63.4 psf	125.0 psf	188.4 psf
3.0 ft	36.9°	9.0°	27.9°	0.49 Rad	67.1°	95.1 psf	155.2 psf	250.3 psf
4.0 ft	45.0°	11.9°	33.1°	0.58 Rad	61.6°	126.8 psf	167.4 psf	294.1 psf
5.0 ft	51.3°	14.7°	36.6°	0.64 Rad	57.0°	158.4 psf	168.1 psf	326.6 psf
6.0 ft	56.3°	17.5°	38.8°	0.68 Rad	53.1°	190.1 psf	162.6 psf	352.7 psf
7.0 ft	60.3°	20.2°	40.0°	0.70 Rad	49.8°	221.8 psf	153.8 psf	375.6 psf
8.0 ft	63.4°	22.8°	40.6°	0.71 Rad	46.9°	253.5 psf	143.4 psf	396.9 psf
8.7 ft	65.3°	24.6°	40.7°	0.71 Rad	45.0°	275.7 psf	135.9 psf	411.6 psf

Boussinesq Lateral Earth Pressure DS-11

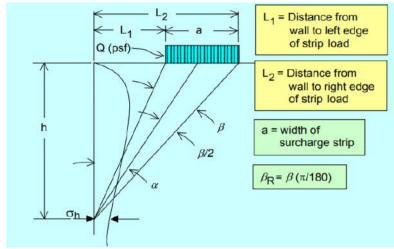
Date: 3/26/2025

Design values per CALTRANS 2015 Standard Specs

& 2011 Trenching and Shoring Manual (Revision 1, August 2011)

Sheet 1 of 3

Shoring & Surcharge Parameters


Shoring Depth = h =	10.0 ft
Offset Distance = L_1 =	3.0 ft
Total Length = L_2 =	5.8 ft
Strip Width = a =	2.8 ft
Surcharge Pressure = Q =	900 psf

CAT 315 Excavator

Soil Parameters

Unit Weight = λ =	99 pcf
Cohesion = C =	0 psf
Friction Angle = φ =	31.0°

Note to user: Spreadsheet only works for shoring < 49.9ft.

Results Summary

The maximum total lateral pressure acting on the shoring is 359psf and occurs 10ft from the top of shoring.

The maximum lateral soil pressure acting on the shoring is 316.9psf and occurs 10ft from the top of shoring.

The maximum lateral surcharge pressure acting on the shoring is 235.87psf and occurs 2.4ft from the top of shoring.

Sample Calculation at h = 10ft

Rankine's Active Earth Pressure Coefficient =
$$K_a = \tan^2(45^\circ - (\phi/2))$$

= $\tan^2(45^\circ - (31^\circ/2))$
= 0.32

[Trenching and Shoring Manual, Eq. 4-9]

Lateral Pressure Due to Soil =
$$\sigma_{h(Soil)}$$
 = $(\lambda \times h \times K_a)$ - $(2 \times C \times Sqrt(K_a))$
= $(99pcf \times 10ft \times 0.32)$ - $(2 \times Opsf \times Sqrt(0.32))$
= 316.90 psf

[Trenching and Shoring Manual, Eq. 4-33]

Lateral Pressure Due to Surcharge =
$$\sigma_{h(Surcharge)}$$
 = $(2Q/\pi) \times [\beta_R - (Sin(\beta) \times Cos(2\alpha))]$
= $(2 \times 900 \text{ psf/}\pi) \times [0.23 \text{ Rad} - (Sin(13.2^\circ) \times Cos(2 \times 23.3^\circ))]$
= 42.10 psf

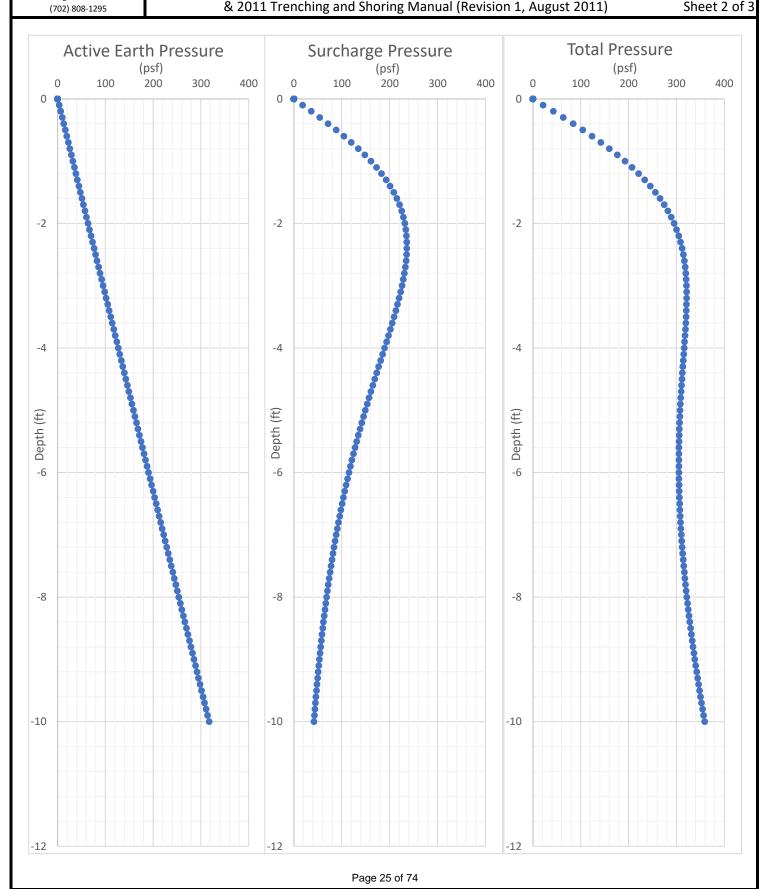
[Trenching and Shoring Manual, Eq. 4-67]

Total Lateral Pressure =
$$\sigma_{h(Total)} = \sigma_{h(Soil)} + \sigma_{h(Surcharge)}$$

= 316.9psf + 42.1psf
= 359.00 psf

Page 24 of 74

9608 Aqua Harbor Way Las Vegas. NV. 89178


Boussinesq Lateral Earth Pressure DS-11

Date: 3/26/2025

Design values per CALTRANS 2015 Standard Specs

& 2011 Trenching and Shoring Manual (Revision 1, August 2011)

Sheet 2 of 3

9608 Aqua Harbor Way Las Vegas. NV. 89178 (702) 808-1295

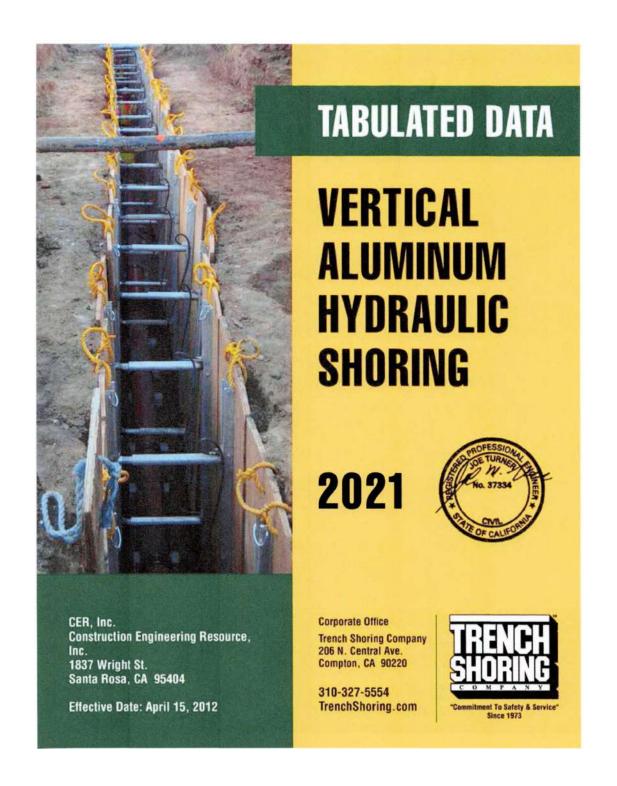
Boussinesq Lateral Earth PressureDS-11

Date: 3/26/2025

Design values per CALTRANS 2015 Standard Specs

& 2011 Trenching and Shoring Manual (Revision 1, August 2011)

Sheet 3 of 3


Detailed Results Summary

h	$\boldsymbol{\theta_1}$	θ_2	β	β_{R}	α	$\sigma_{h(Soil)}$	$\sigma_{h(Surcharge)}$	$\sigma_{h(Total)}$
0.0 ft	-	-	-	-	-	0.0 psf	0.0 psf	0.0 psf
1.0 ft	18.4°	9.9°	8.6°	0.15 Rad	75.8°	31.7 psf	160.9 psf	192.5 psf
2.0 ft	33.7°	19.2°	14.5°	0.25 Rad	63.6°	63.4 psf	231.8 psf	295.2 psf
3.0 ft	45.0°	27.6°	17.4°	0.30 Rad	53.7°	95.1 psf	226.0 psf	321.0 psf
4.0 ft	53.1°	34.8°	18.3°	0.32 Rad	46.0°	126.8 psf	189.5 psf	316.2 psf
5.0 ft	59.0°	41.0°	18.0°	0.31 Rad	40.0°	158.4 psf	149.3 psf	307.8 psf
6.0 ft	63.4°	46.2°	17.2°	0.30 Rad	35.2°	190.1 psf	115.1 psf	305.3 psf
7.0 ft	66.8°	50.6°	16.2°	0.28 Rad	31.3°	221.8 psf	88.4 psf	310.3 psf
8.0 ft	69.4°	54.3°	15.2°	0.26 Rad	28.1°	253.5 psf	68.3 psf	321.9 psf
8.7 ft	71.0°	56.5°	14.4°	0.25 Rad	26.2°	275.7 psf	57.4 psf	333.1 psf

SHORING PLAN

Project Name: Coastline Drive 12-Inch Waterline Improvements Project

TRENCH SHORING

VERTICAL ALUMINUM HYDRAULIC SHORING TABULATED DATA

1

Contents

Contents	1
About Trench Shoring Safety Vertical Aluminum Hydraulic Shore Tabulated Data	1
Vertical Aluminum Hydraulic Shoring Quick Use Guide	3
Hydraulic Shore Safety Issues	7
Vertical Aluminum Hydraulic Shores Description	
General Information for Use of Vertical Aluminum Hydraulic Shores	
Classification of Soil Types	
Vertical Aluminum Hydraulic Shore Selection Guide	
Vertical Aluminum Rail Specification	
Typical Vertical Aluminum Hydraulic Rail Dimensions	16
Hydraulic Cylinder Specifications	17
Vertical Aluminum Hydraulic Shore Installation and Removal Procedure	19
Installation steps for use of Vertical Aluminum Hydraulic Trench Shores	
Safe Handling and Use of Trench Shores	
Subpart P Additional Requirements Related to Hydraulic Shoring with Commentary	

About Trench Shoring Safety Vertical Aluminum Hydraulic Shore Tabulated Data

Vertical Aluminum Hydraulic Shores were first developed in the late 1950's and early 1960's. To this day, the shores are built practically the same as they were then. There are several major manufacturers all with similar parts and their own version of manufacturer's tabulated data. Some parts are also interchangeable. Due to the interchangeability and variety of tabulated data available, Trench Shoring has developed this set of universal tabulated data under;

Federal OSHA 29CFR, Part 1926, Subpart P-Excavations and Trenches

1926.652(c)(3)-Option (3) - Designs Using other Tabulated Data.

1926.652(c)(3)(i) -Design of support systems, shield systems, or other protective systems shall be in accordance with tabulated data, such as tables and charts.

Note that manufacturer's tabulated data is developed under;

1926.652(c)(3)-Option (2) - Designs Using Manufacturers Tabulated Data.

Federal OSHA 29CFR also has tabulated data for vertical hydraulic shores under;

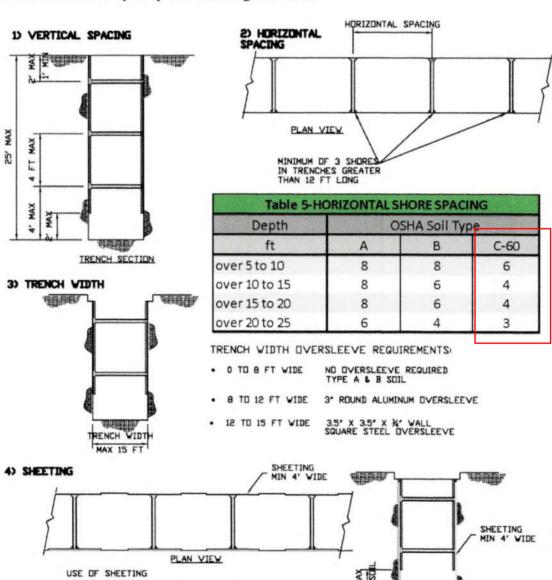
1926 Subpart P-Appendix D-Aluminum Hydraulic Shoring for Trenches

2

Federal OSHA 29CFR only allows use of Appendix D when Option 2 is not available. Appendix D tabulated data is more restrictive than manufacturer's tabulated data in two major ways;

- 1. There is no category for OSHA Type C soil
- 2. The tables only allow trench depths to 20 ft deep

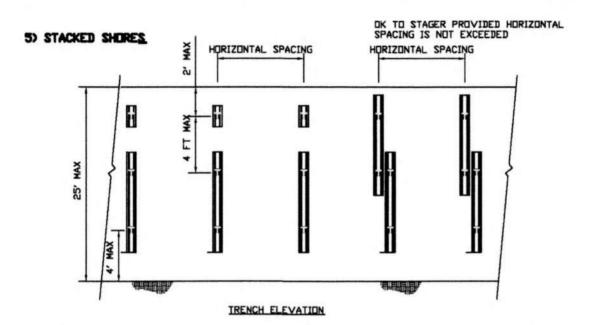
Use of this Trench Shoring Universal Vertical Aluminum Hydraulic Shore tabulated data will result in selection of a system that, at a minimum, conforms to manufacturers tabulated data developed by;

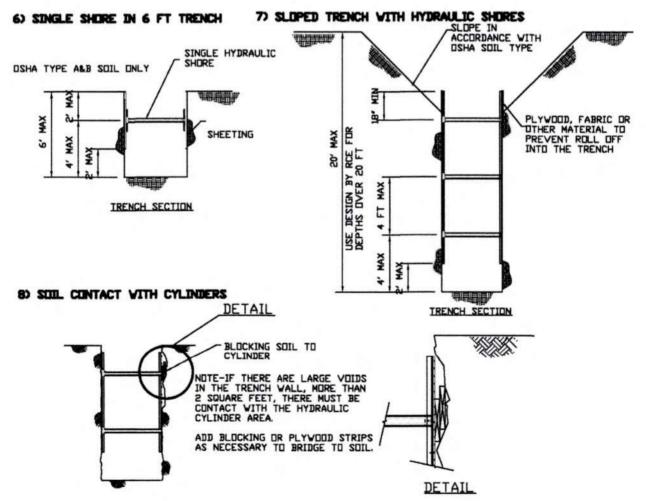

- · Allied Tren-Shore
- Cerda
- Efficiency Corporation
- GME Corporation
- · Kundle Tren-Shore
- Pacific Shoring, LLC
- Quick Shore
- Safety Shore
- Speed Shore Corporation

In some cases, this tabulated data will be more restrictive than the manufacturers version; however it is always less restrictive than the OSHA Appendix D version. The competent person utilizing this tabulated data should have a clear understanding that he is selecting a shoring system under Option 3, Designs Using other Tabulated Data.

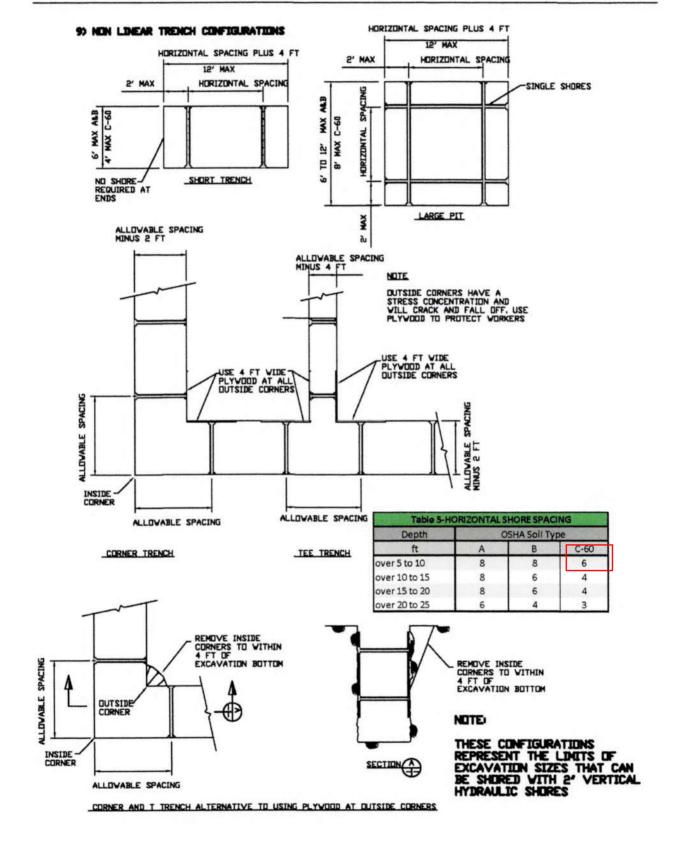
Vertical Aluminum Hydraulic Shoring Quick Use Guide

This quick use guide provides a step-by-step methodology for determining the proper configuration of a vertical aluminum hydraulic shoring system. Proper use of this process will result in a system constructed in accordance with the tabulated data presented here. To be in conformance with this tabulated data, all of the information presented in this document shall be read and understood by the person utilizing this data.

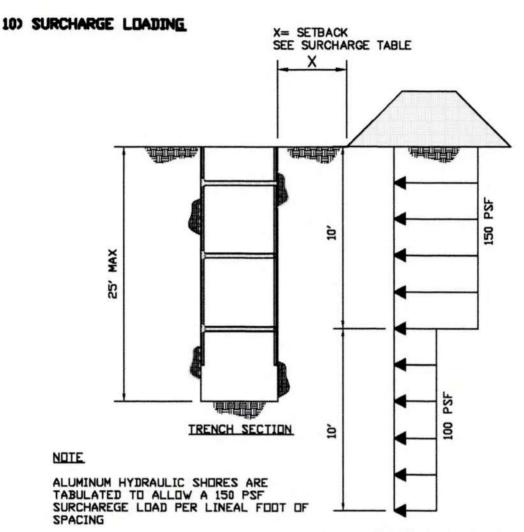

- . TYPE C-60 SOIL
- MAXIMUM 2 FT ABOVE BOTTOM IN TYPE A
 B SOIL TO BOTTOM IN C-60 SOIL


IN ALL CASES WHERE SLOUGHING OR RAVELING OCCUR. IF SKIPPED SHEETING DOES NOT PREVENT IT, DECREASE SHORE SPACING UNTIL IT DOES.

TRENCH SECTION



4

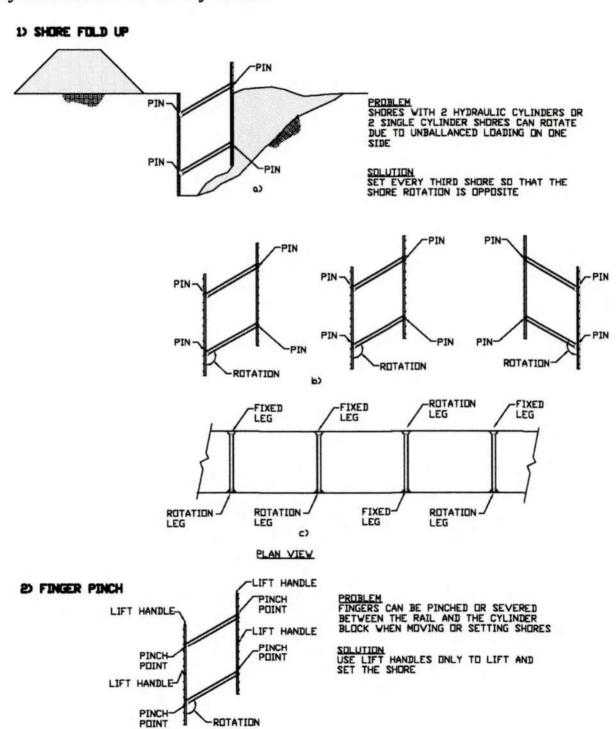


5

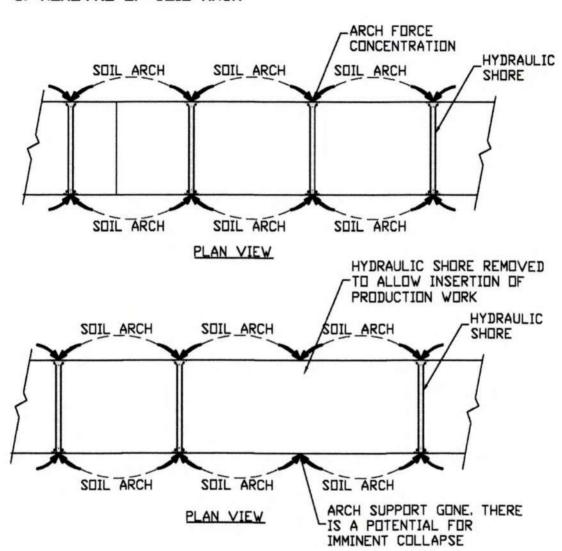
6

SURCHARGE LOADING DIAGRAM
SURCHARGE AFTER 20 FT DEEP IS 50 PSF OR LESS

Surcharge	Setback Distance x	Surcharge	Setback Distance
K-Rail	1ft	3 Cy Loader	2 ft
HS20-44 Traffic	4 ft	5 Cy Loader	3 ft
Spoll Pile 4 ft high	2 ft	225 Excavator	2 ft
Backhoe	2 ft	325 Excavator	3 ft
Equipment < 20,000 lb	2 ft	Dump Truck and Haul Trucks	3 ft
Equipment >20,000 lb	3 ft	12 CY Concrete Truck	3 ft
		Boom Truck Pad	6 ft
Table Notes:			


3 Table setbacks are for open trenches. When traffic covers are in place HS20-44 traffic can pass

over the covered excavation


7

Hydraulic Shore Safety Issues

8

3) REMOVAL OF SOIL ARCH

PROBLEM

SOIL ARCHING IS ESTABLISHED WHEN SHORES ARE INSTALLED. TEMPORARY OR PERMANENT REMOVAL OF THE SHORE IS A POTENTIAL FOR IMMINENT COLLAPSE

SOLUTION

- WHEN REMOVING SHORES KEEP BACKFILL CLOSE TO SHORES BEING REMOVED
- 2. WHEN REMOVING AND RESETTING SHORES TO ALLOW PLACEMENT OF PRODUCTION WORK USE REMOTE EQUIPMENT SUCH AS BACKHOE OR BOOM TRUCK TO PICK AND RESET SHORES. OPERATE SHORE HYDRAULICS FROM SHORED AREA.

9

Vertical Aluminum Hydraulic Shores Description

Vertical Aluminum Hydraulic Shores are constructed from standard duty or heavy-duty vertical rails attached to 2" hydraulic cylinders. The rail lengths vary from 18" to 20 ft long. The cylinders can extend from 18" to 88". Cylinder extensions can be added to obtain lengths to 15'. The hydraulic cylinder consists of a 2" OD piston, a 2" ID x 3/16" barrel, and a 3" OD x 3/16" oversleeve. The cylinders provide a 23,000 lb safe working load for cylinder bulging at a 1.5 factor of safety. At lengths 8 ft to 12 ft an additional 3" round aluminum over sleeve is required and at 12 ft to 15 ft a 3.5" x 3.5"x 3/16"wall a square steel oversleeve is required to prevent buckling. Based on the principal of soil arching Vertical Aluminum Hydraulic Shores can be spaced horizontally as much as 8 ft apart without sheeting on the trench walls. Plywood sheeting is used either attached or separate behind the rails to prevent the trench walls from sloughing or raveling.

Vertical Aluminum Hydraulic Shores are installed from outside the excavation. The shores are hinged so that they can be folded when lowered into the trench and then opened up and pressurized with a hydraulic hand pump. The hydraulic fluid is water soluble, environmentally safe, and biodegradable. Rails 5 ft long and less can typically be moved, set, and removed by a two man crew. Larger shores are typically handled by backhoe, loader or boom truck.

Vertical Aluminum Hydraulic Shores are typically used in linear trench applications in OSHA Type A, Type B, and Type C-60 soils at depths to 23 ft and trench widths to 15 ft. Constraints such as the requirement that the bottom cylinder be set a maximum of 4 ft from the bottom of the excavation, bedding requirements, and pipe wall thicknesses limits the pipe diameter or duct height to approximately 36" maximum. The 8 ft maximum horizontal spacing limits large pipe lengths to approximately 8 ft, while smaller diameters with longer lengths to 20 ft such as PVC sewer and water lines can be maneuvered between the cylinders to fit into the trench.

General Information for Use of Vertical Aluminum Hydraulic Shores

 The vertical aluminum hydraulic shoring system tabulated here is based on requirements of Federal OSHA 29CFR, Part 1926, Subpart P-Excavations and Trenches

1926.652(c)(3)-Option (3) - Designs Using other Tabulated Data.

1926.652(c)(3)(i) -Design of support systems, shield systems, or other protective systems shall be in accordance with tabulated data, such as tables and charts.

All provisions of Subpart P apply when utilizing this tabulated data. The contractor's competent person shall use this data to select:

- allowable trench depth
- · vertical and horizontal shore spacing
- · proper oversleeve requirement based on trench width
- plywood use requirements

10

- The competent person utilizing this tabulated data shall be experienced and knowledgeable of all requirements of Subpart P, and trained in the use and safety procedures for aluminum vertical hydraulic shores.
- For specific Subpart P requirements regarding aluminum hydraulic shoring that is in addition to the tabulated data requirements, see OSHA Subpart P additional requirements related to aluminum hydraulic shoring. Some of these requirements are listed at the end of this document, See Header PG. 29
- 4. Use of this tabulated data is dependent on first classifying the soil in accordance with OSHA Appendix A, Soil Classification. Classification shall be just prior to installing Vertical Hydraulic Shoring. Soil conditions may change at a later date and require Vertical Hydraulic Shoring to be reset at a different spacing.
- 5. Hydraulic vertical shores are tabulated based on the effect of a 20,000 lb surcharge load set back 2 ft from the edge of the trench and the equivalent weight effect of the OSHA soil type, See classification of soil types, 2.
- The depth and spacing given in Table 1
 governs the use of Vertical Hydraulic Shores
 and not tabulations given in OSHA Appendix C
- Faces of excavations shall be vertical and there shall be in contact with the soil at each cylinder, Figure 1.
- Shores shall be set near vertical; however, they may be set as much as 30 degrees from vertical provided that vertical and horizontal spacing is maintained.
- Vertical Hydraulic Shores may be stacked or longitudinally lapped, Figure 2, provided shore spacing is maintained.

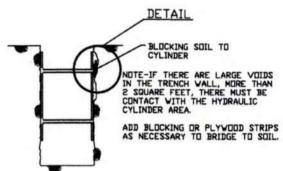
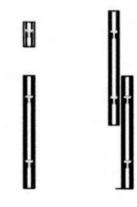



Figure 1. - See note 7

Stacked Lapped Figure 2. – See note 9

11

- 10. Trenches maximum 12 ft long or horizontal spacing 4 ft or less shall have a minimum of 2 shores set in accordance with spacing requirements. Longer trenches shall have a minimum of 3 shores set at required spacing. See Figure 3.
- Shores shall be installed and removed from outside the trench, see installation and removal procedure.
- Single cylinder shores may be used in place of multiple cylinder shores provided that horizontal and vertical spacing is maintained.
- 13. The competent person shall continually monitor the shored excavation for changed conditions such as water seepage, soil movement cracks at the surface, sloughing or raveling, proper surcharge load weight less than 20,000 lbs and setback a minimum of 2 ft and damaged shores.
- 14. Workers shall always enter, exit, and work inside the shored area of the trench.

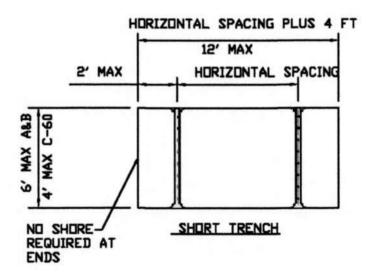


Figure 3. - Short trench, See Note 10

12

Classification of Soil Types

- Soil classification shall be in accordance with OSHA Appendix A and classified just prior to installing hydraulic vertical shores. Soil conditions may change at a later date and require hydraulic vertical shores to be reset at a different spacing.
- 2. The equivalent weight of OSHA soil types* is assumed to be as follows:

•	OSHA Type "A" Soil	25 PSF per ft of depth
•	OSHA Type "B" Soil	45 PSF per ft of depth
•	Type "C-60" Soil	60 PSF per ft of depth**
•	OSHA Type "C" Soil	80 PSF per ft of depth

- * These equivalent weights were adapted from OSHA 1926 Subpart P App C, Timber Shoring for Trenches, Tables C-1.1, C-1.2, and C-1.3
- ** Type C-60 soil is not identified or classified in OSHA Appendix A
- 3. Type C-60 soil is;
 - soil that does not qualify as OSHA Type A, or Type B, can be cut with vertical
 walls and will stand up long enough to safely insert and pressurize the
 hydraulic shore,
 - the water table must be at or below the bottom of the excavation with no visible water seeping from the sides of the excavation
- 4. Hydraulic shores shall not be used in OSHA Type C-80 Soil

Vertical Aluminum Hydraulic Shore Selection Guide

		ments	r Require	Hydraulic Cylinde		
Sheeting	Cylinder Size Width of Excavation (ft)			Maximum Maximum Vertical Horizontal Cylinder Spacing		Depth of rench (ft)
	12 to 15	8 to 12	to 8	(ft)	Spacing (ft)	
			"A" Soil	TYPE		
NOTE 2	2"+OS2	2"	2"	4'	8'	to 10'
	2"+OS2	2"				10' to 15'
	2"+OS2	2"+OS1				15' to 20'
	2"+OS1 2"+OS2	o 25'		20' to 25'		
			"B" Soil	TYPE		
NOTE 2	2"+OS2	2"	2"	4'	8'	to 10'
	2"+OS2	2"			7'	10' to 15'
	2"+OS2	2"+OS1			6'	15' to 20'
NOTE 3, 4	2"+OS2	2"+OS1		+	5'	20' to 25'
			C-60" Soil	TYPE "(
NOTE 3	2"+OS2	2"	2"	4'	6'	to 10'
	2"+OS2	2"			5'	10' to 15'
+	2"+OS2	2"+OS1			4'	15' to 20'
NOTE 3, 4	2"+OS2	2"+OS1	1	+	3'	20' to 25'

Notes

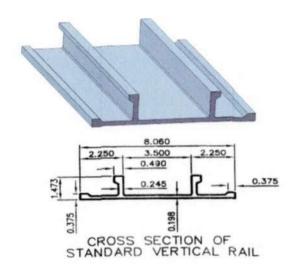
1. Soil shall first be classified in accordance with OSHA Appendix A Soil Classification for use

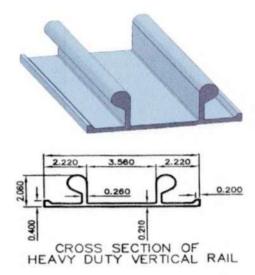
with this selection guide. Type C-60 soil is OSHA Appendix A Type C soil that will stand up long enough to install the hydraulic shores.

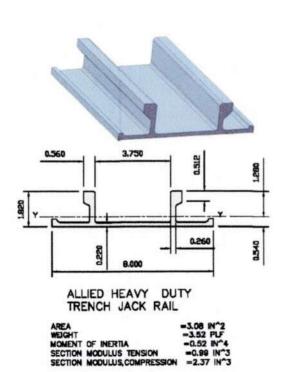
Sheeting is required at any depth whenever sloughing or raveling occur. If sloughing or raveling occurs between sheeting, decrease spacing until it is prevented. See
 Table 2 for allowable sheeting. Sheeting may be attached to jack or set into trench separately.

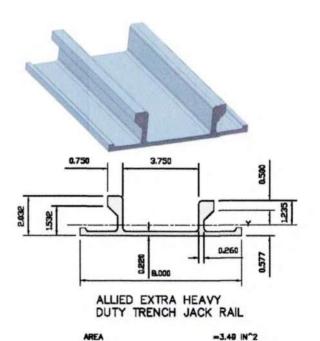
		Tat	ole 2-ALLC	WABLE SHEETING		
	PI	ywood		Other Materials		
3/4" Finn Fo	rm			1/2" thick steel plate 4 ft wide x depth		
3/4" Omni F	orm			Steel sheet piling		
3/4" plyforn	n, Class 1 E	xterior		Aluminum sheet piling		
3/4" HDO, H	igh Debsit	y Overlay		Buildable box panels		
3/4" HDO, H	igh Densit	y Overlay				
3/4" 14 Ply A	Artic White	Birch				
1-1/8" CDX						
2 sheets of 3	3/4" CDX		AL III			
Tir	mber Lagg	ing Set Horizo	ontal			
Thickness		Soil Type/Sp	an			
Inickness	A	В	C-60			
2"	4 ft					
3"	5 ft	4 ft				
4"	8 ft	6 ft	4 ft			
DF#2 or Oak						

14

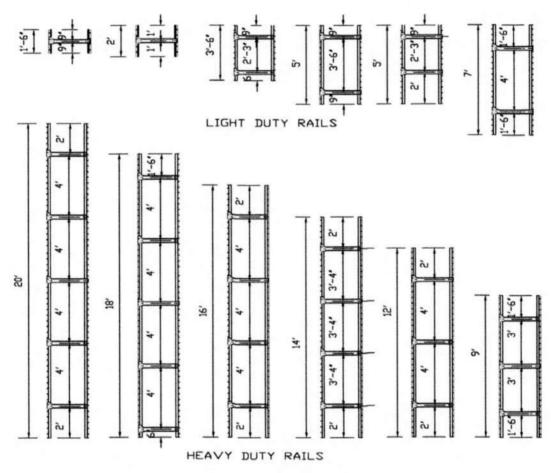

- 3. Sheeting is required at this depth.
- 4. Sheeting must extend to the bottom of the excavation.
- 5. This tabulation includes lateral loading from equipment weighing 20,000 lbs or less and a maximum 2 ft high spoil pile set back a minimum of 2 ft. The competent person shall determine the effect of all other surcharge loads and reduce hydraulic shore spacing as required to resist those loads.




Vertical Aluminum Rail Specification


VERTICAL RAIL SPECIFICATION SHEET

SECTION PROPERTIES	STANDARD RAIL	HEAVY DUTY RAIL
MATERIAL	ALUMINUM	ALUMINUM
ALLOY	6061-T6	6061-T6
AREA	2.45 In2	3.47 in ²
WEIGHT	2.94 plf	4.17 plf
SECTION-MODULUS - TOP (LEG SIDE)	0.44 In ³	1.25 in 3
SECTION-MODULUS - BOTTOM (BLADE SIDE)	1.29 in 3	2.38 in ³
EQUIVALENT TIMBER SIZE . (#2 DOULAS FIR)	3x10 (FLAT)	4x10 (FLAT)



MOMENT OF INERTIA SECTION MODULUS TENSION SECTION MODULUS, COMPRESSION

16

Figure 4. Vertical Rail Specifications

Typical Vertical Aluminum Hydraulic Rail Dimensions

HYDRAULIC VERTICAL SHORE CYLINDER AND RAIL CONFIGURATIONS

Figure 5 - Rail Dimensions

Note - Custom rail and cylinder spacing available upon request, however when using them with this tabulated data all spacing requirements of the data shall be met.

Hydraulic Cylinder Specifications

To configure for trench width, the proper cylinder range, extension if necessary, and oversleeve must be determined. **Table 3** lists some of the available cylinder ranges and some of the ranges with extensions.

Extension	R	ange	F	R	ange
Extension	Cylinder	w/ Extension	Extension	Cylinder	w/ Extension
(in)	(in)	(in)	(in)	(in)	(in)
11	17-27	28-38	21	40-64	61-85
22		39-49	42		82-106
33		50-60	56		96-120
11	22-36	33-47	24	52-88	76-112
22		44-58	42		94-130
33		55-69	56		108-144
15	28-46	43-61	74	52-88	126-162
30		58-76	82		132-168
45		73-91	92		144-180
18	34-55	52-73	128		180-216
36		70-91			
54		88-109			

Oversleeve requirements are given in Table 4 and shown in Figures 6, 7, 8.

Table 4-OVERSLEEVE REQUIREMENTS			
Trench Width	Oversleeve Required		
to 8 ft No oversleeve required			
8 ft to 12 ft 3" x3/16" round aluminum oversleeve			
12 ft to 15 ft	3-1/2" x 3-1/2" x 3/16" steel oversleeve		

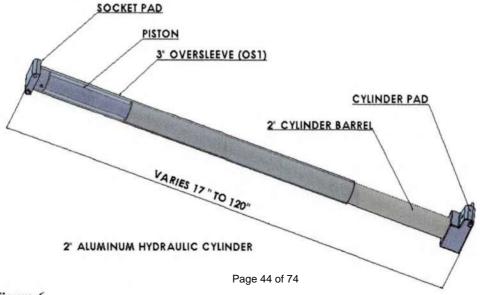
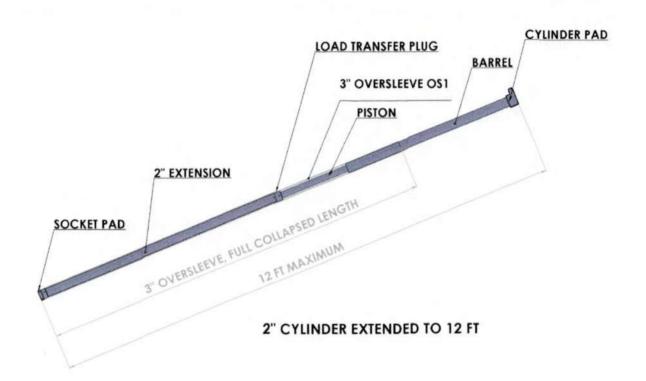



Figure 6

18



Figure 8

19

Vertical Aluminum Hydraulic Shore Installation and Removal Procedure

Required for installation

- Vertical Hydraulic Jack
- · Pump with fluid and operating pressure gauge
- · Release tool

Installation Procedure

- Step 1 Attach hydraulic hose to hydraulic fitting on shore. Open the valve on the pump can so that the shore cannot be pressurized. Set plywood if required and not attached to the shore into trench.
- Step 2 Lower shore into trench with folded up blade toward opposite trench wall and hydraulic fitting toward adjacent wall. After the shore is set to elevation, hold adjacent blade in place with release tool and let go of opposite blade allowing it to completely unfold and lock into position. In order for the shore to lock into position, the cylinder must be 90 degrees from the blade. Heavy or wide shores that cannot be safely lifted by one person should be set in with lifting equipment such as backhoe, boom truck or crane.
- Step 3 Close the valve on the pump can and pressurize the hydraulic shore to between 750 and 1500 psi. Pressure gauge should hold at pressure and not indicate any loss of pressure.
- Step 4 Remove the hydraulic hose by prying off with release tool. Clip hose to top of pump to prevent contamination by dragging it in the dirt. Move to next shore location and repeat process.

While trench shores are in place

- Check at least at start of shift for loose shores. This can be done by tapping the top of the shore with a metal rod; it will sound loose, sort of like kicking a tire to see if it is flat. Remove and replace loose shores.
- · Check for sloughing or raveling. If it is occurring, sheeting must be used.
- · Confirm that soil classification has not changed.

Required for Removal

- Vertical Hydraulic shore
- Release tool
- · Removal tool or lifting equipment

20

Removal Procedure

- Step 1 Place release tool over hydraulic fitting and removal hook in handle on opposite blade.
- Step 2 Push release tool away to release fluid and pressure. Pull up on the removal hook to fold the shore up and then lift it out of trench.

Note - Depending on the length of the shore and width of the trench different installation procedures may be used. It is the responsibility of the contractor and his competent person to establish a safe installation and removal procedure for each application. All trench shore installers shall be instructed in the procedure prior to installing the shores.

21

Installation steps for use of Vertical Aluminum Hydraulic Trench Shores

Step 1 - Determine trench shoring requirements (Figure 9)

- Trench Depth
- · Trench Width
- Trench Length

Note - Dewatering must be to the bottom of the excavation

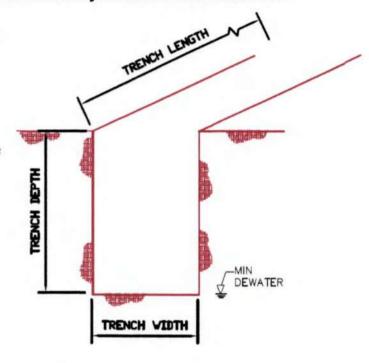
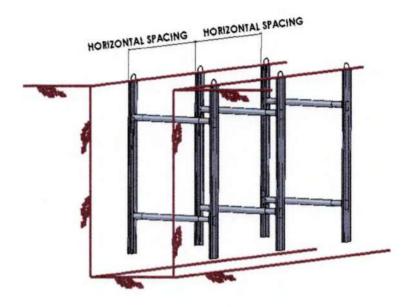


Figure 9 - Trench Parameters

Step 2 - Determine soil type in conformance with OSHA Appendix A

• Type A-25 Sloping 3/4:1


• Type B-45 Sloping 1:1

• Type C-60 Sloping 1-1 ½:1

Hydraulic Shores cannot be used in Type C-80 soil

Step 3 - Determine horizontal shore spacing (Figure 10)

Table 5 Notes

- A competent person must decide whether trenches under 5 ft deep are stable or will require shoring.
- Aluminum hydraulic shores are not allowed at any spacing in C-80 soil

Figure 10 - Horizontal

Table 5-HORIZONTAL SHORE SPACING					
Depth OSHA Soil Type					
ft	Α	В	C-60		
over 5 to 10	8	8	6		
over 10 to 15	8	6	4		
over 15 to 20	8	6	4		
over 20 to 25	6	4	3		

Step 4 - Determine vertical cylinder spacing (Figure 11)

Table 6-VERTICAL CYLINDER SPACING				
Debugge	Maximum	Minimum		
Between	(ft)	(ft)		
Top cylinder and surface	2	1		
Between cylinders (note 3)	4	_		
Bottom to first cylinder	4			
Bottom of trench and lowest element of shoring (note 1)	_	2		

Table 6 Notes

- See OSHA 1926.652 (e) (2)
 Additional requirements for trench excavations (i)
- Indicates no limitation
- When stacking hydraulic shores do not set hydraulic cylinders more than 4 ft apart

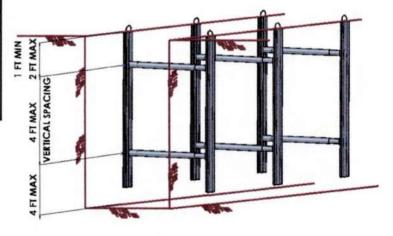


Figure 11 - Vertical

23

Step 5 - Determine Cylinder size and Oversleeve Requirement for trench width

	0	SHA Type A, B, and C	-60	
Depth	Trench Width			
	To 8	8 to 12	12 to 15	
(ft)	(ft)	(ft)	(ft)	
to 5	2"	2" +OS 1	2" +OS2	
over 5 to 10	2"	2" +OS 1	2" +OS2	
over 10 to 15	2"	2" +OS 1	2" +052	
over 15 to 20	2"	2" +OS2	2" +OS2	
ver 20 to 25	2"	2" +OS2	2" +052	
		OSHA Type B-45 Soil		
Depth		Trench Width		
	To 8	8 to 12	12 to 15	
(ft)	(ft)	(ft)	(ft)	
to 5	2"	2" +OS 1	2" +052	
over 5 to 10	2"	2" +05 1	2" +052	
ver 10 to 15	2"	2" +OS2	2" +052	
ver 15 to 20	2"	2" +OS2	2" +052	
over 20 to 25	2"	2" +OS2	2" +052	
	Marie San Control	OSHA Type C-60 Soil		
Depth		Trench Width		
	To 8	8 to 12	12 to 15	
(ft)	(ft)	(ft)	(ft)	
to 5	2"	2" +0\$ 1	2" +052	
over 5 to 10	2"	2" +05 1	2" +OS2	
ver 10 to 15	2"	2" +OS2	2" +OS2	
over 15 to 20	2"	2" +OS2	2" +052	
ver 20 to 25	2"	2" +OS2	2" +052	

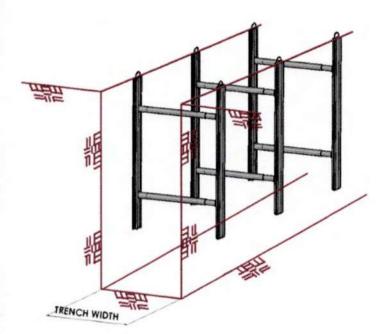


Figure 12 - Trench Width

Step 6 - Determine sheeting requirements (Figure 13)

Table 8-SHEETING REQUIREMENTS						
Depth	OSHA Soil Type					
ft	A	В	C-60			
to 8	Not Required	Not Required	Not Required			
over 8 to 10			Required			
over 10 to 15						
over 15 to 20						
over 20 to 25		1	1			

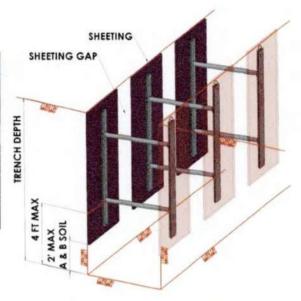


Table 8 Notes:

Figure 13 Sheeting Requirements

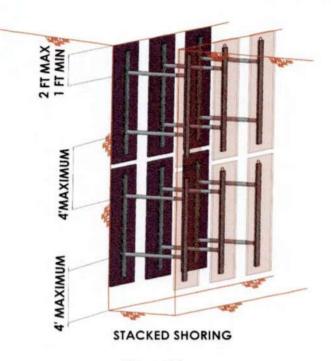
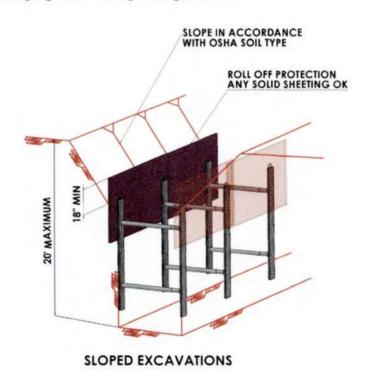
- 1. Sheeting is always required when sloughing or raveling occurs and in C-60 soil over 8' deep.
- 2. If there is a sheeting gap due to allowable shore spacing, the gap must be reduced until sloughing or raveling is prevented.
- 3. Sloughing is associated with soft cohesive soil that squeezes around the rail or sheeting. Raveling is associated with non-cohesive soil, sands and gravels that fall off the face of the trench wall. Trench wall face exposure over time can create raveling as moisture cohesion weakens due to drying.
- 4. Sheeting is not considered a structural part of the shore. Sheeting material requirements are strictly to meet minimum durability and handling requirements.
- 5. Sheeting may be set separately or connected to the shore.
- 6. In C-60 soil sheeting shall extend to the bottom of the excavation.
- 7. See Table 2 for allowable sheeting material.

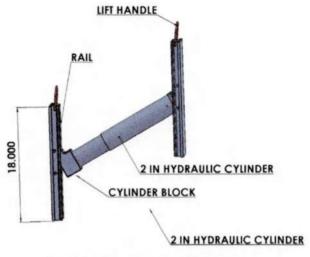
	Harris III	Tab	le 2-ALLC	DWABLE SHEETING
	PI	ywood		Other Materials
3/4" Finn Fo	rm	THE REAL PROPERTY.		1/2" thick steel plate 4 ft wide x depth
3/4" Omni F	orm			Steel sheet piling
3/4" plyforn	n, Class 1 E	xterior		Aluminum sheet piling
3/4" HDO, H	igh Debsit	y Overlay		Buildable box panels
3/4" HDO, H	igh Densit	y Overlay		
3/4" 14 Ply A	Artic White	Birch		
1-1/8" CDX				
2 sheets of	3/4" CDX			
Ti	mber Laggi	ing Set Horizo	ontal	
Thislenger	Soil Type/Span			
Thickness	A	В	C-60	
2"	4ft			
3"	5ft	4 ft		
4"	8 ft	6 ft	4 ft	
DF#2 or Oak	(

Page 51 of 74

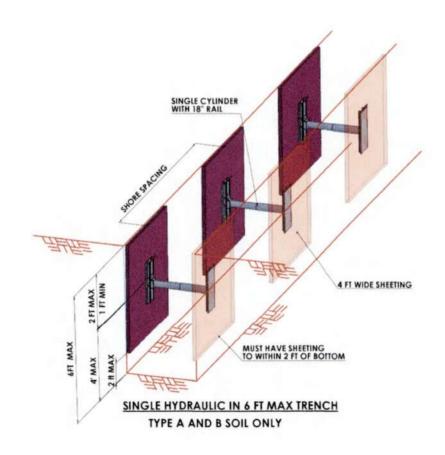
Step 7 - Stacked Configurations (Figure 14)

- Shores may be stacked vertically as long as the hydraulic cylinders are no more than 4 ft apart
- Shores may be staggered as long as allowable shore spacing is not exceeded

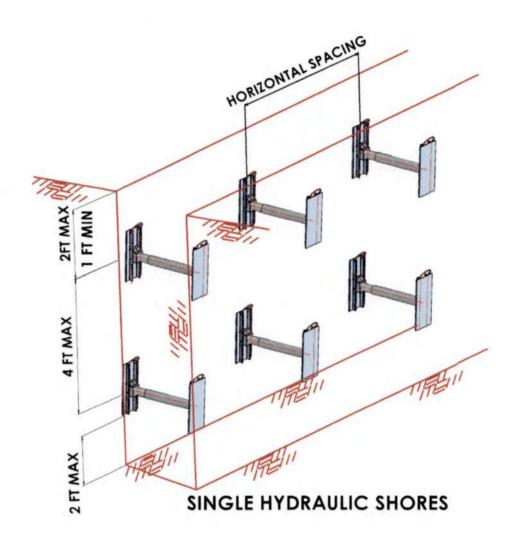



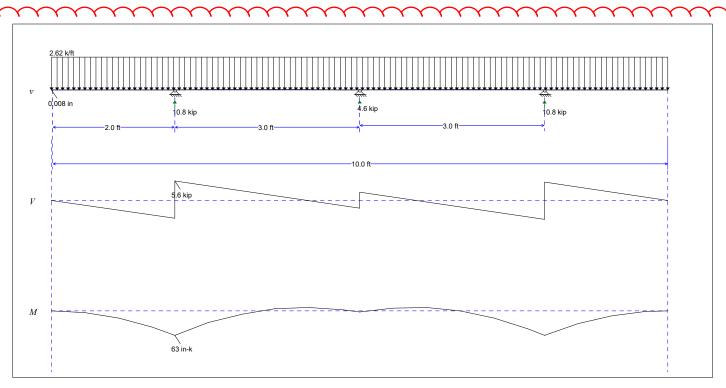

Figure 14

Step 8 - Combined sloping and shoring configurations



Step 9 - Single Hydraulic Shore


SINGLE HYDRAULIC SHORE



Beam Parameters: Length = 10.0 ft, E = 16000.0 ksi, I = 140.0 in⁴, A = 2.5 in²

Assume Max Ht = 10 ft

 $M = wl^2/10$ - Per Caltrans Trench & Shoring Manual Section 5.2

 $Fy = 40,000 \text{ psi } \times 0.60 = 24,000 \text{ psi}$

w = 438 psf * 6 ft spacing = 2628 lb/ft

fb = Moment / $Sx = 52 \text{ in-k} / 2.38 \text{ in}^3 = 21,849 \text{ psi} < Fy OK$

Cylinder Load = 10,800 lbs < 23,000 lbs ok

Revision 2 Calculations

MZB ENGINEERING, INC

<u>TEL:949.254.4792</u> <u>engineering@mzbinc.com</u>

www.mzbinc.com

Hydraulic Vertical Shores Check Sheeting Placed Parallel to Vertical Rail $D_1 \coloneqq 2 \ \mathbf{ft}$ Depth to Top Strut $D_2 = 5 \, ft$ Depth to Mid Strut $P_1 \coloneqq 459 \; \frac{\boldsymbol{lb}}{\boldsymbol{ft}^2}$ Loading at D1 $P_2 \coloneqq 459 \; rac{m{lb}}{m{ft}^2}$ Loading at D2 $W = P_1 = 459 \frac{lb}{ft^2}$ Avg loading on panel, used for end plate loading Soil Arching factor for sheeting or lagging per a = 0.6Caltrans Shoring Manual $W_d \coloneqq P_1 \cdot a = 275.4 \frac{lb}{ft^2}$ Design Soil Load on Shoring $w_S \coloneqq 4 \ ft$ Sheeting Width $w_R = 0.67 \ ft$ Rail Width Rail Width Arch Factor Arch = 2Span of end panel sheeting $L \coloneqq 1.33 \ \mathbf{ft}$ $M_u := \frac{W \cdot L^2 \cdot a \cdot 1 \ ft}{2} = 243.578 \ lb \cdot ft$ Sheeting max Moment $V_u \coloneqq \frac{W \cdot a \cdot L \cdot ft}{2} = 183.141 \ lb$ Sheeting max Shear Check Plywood Sheeting Load Duration Factor Ldf = 1.25Per NDS Specification Table 1A $F_b \coloneqq 1545 \frac{lb}{in^2}$ **Bending Stress**

$F_v \coloneqq 57 \; rac{oldsymbol{lb}}{oldsymbol{in}^2}$	Rolling Shear
$m{in}^2$	
$E \coloneqq 1500000 \frac{lb}{in^2}$	Modulus of Elasticity
$m{in}^2$	
$F'_b \coloneqq F_b \cdot Ldf = 1931 \frac{lb}{in^2}$	Allowable Bending Stress
$F'_v \coloneqq F_v \cdot Ldf = 71.25 \frac{lb}{in^2}$	Allowable Bending Stress
$t \coloneqq 1.125$ in	Sheeting Thickness
$n \coloneqq 2$	Number of Sheets
Section Properties	
$KS \coloneqq 0.955 \boldsymbol{in}^3$	$I\!\coloneqq\!0.623$ in^3
$lb.Q \coloneqq 8.841 \ \textit{in}^2$	
$f_b \coloneqq \frac{M_u}{KS \cdot n} = 1530 \; \frac{lb}{in^2}$	< F'b OK
$f_v \coloneqq rac{V_u}{lb.Q \cdot n} = 10 \; rac{oldsymbol{lb}}{oldsymbol{in}^2}$	< F'v OK
$\Delta \coloneqq \frac{W \cdot L^4}{8 \cdot E \cdot I} = 0.028 \; in$	< 1 in OK
Check Steel Plate Sheeting	
Ov = 1.33	Temporary Loading Overstress Factor
$\Omega \coloneqq 1.67$	ASD bending/shear reduction factor
$F_y = 36000 \frac{lb}{in^2}$	
Bending Stress	
$S_{req} \coloneqq \frac{\Omega \cdot M_u}{Ov \cdot F_u} = 0.102 \; oldsymbol{in}^3$	

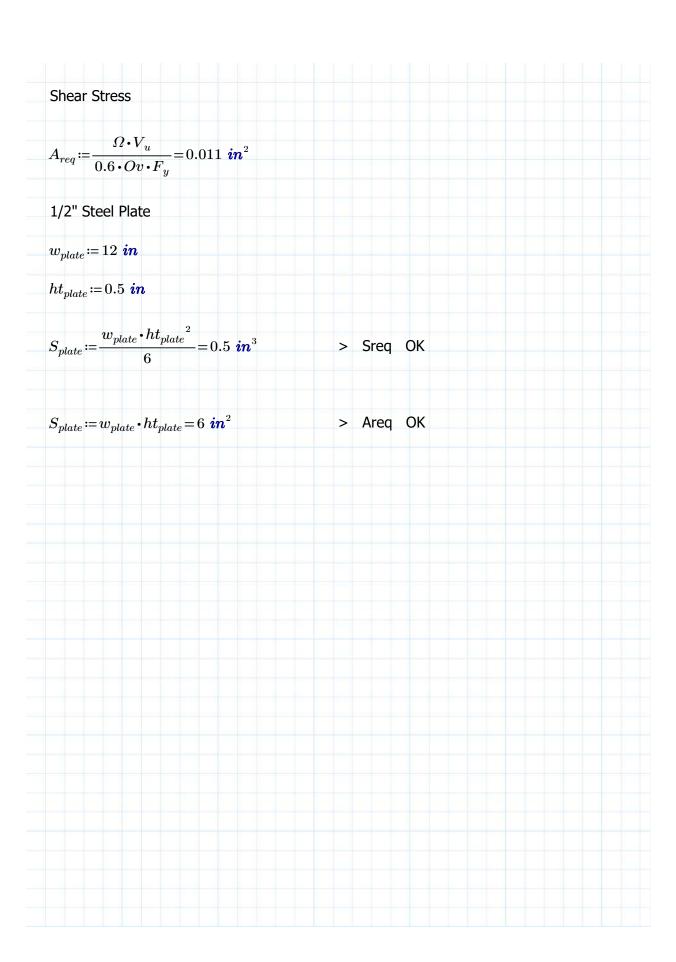


Table 4.13: Effective section properties for B-B Plyform plywood (12 in, widths)

		12 in. wid	ith, used with parallel to sp	rm plywood (h face grain an	12 in. wid	th, used with endicular to	ı face grain span	Approx	cimate ht, lb
plyform grade	Sanded plywood, net thickness, in.	Moment of inertia	Effective section modulus KS, in. ³	Rolling shear constant Ib/Q, in. ²	Moment of inertia	Effective section modulus KS, in. ³	Rolling shear constant Ib/Q, in. ²	4x8 ft sheet	per ft²
	15/32	0.066	0.244	4.743	0.018	0.107	2.419	45	1.4
	1/2	0.077	0.268	5.153	0.024	0.130	2.739	48	1.5
	19/32	0.115	0.335	5.438	0.029	0.146	2.834	57	1.8
	5/8	0.130	0.358	5.717	0.038	0.175	3.094	60	1.9
Class	11/16	0.164	0.409	6.175	0.044	0.183	3.524	66	2.1
ŏ	23/32	0.180	0.430	7.009	0.072	0.247	3.798	69	2.2
	3/4	0.199	0.455	7.187	0.092	0.306	4.063	72	2.3
	7/8	0.296	0.584	8.555	0.151	0.422	6.028	84	2.6
	1	0.427	0.737	9.374	0.270	0.634	7.014	96	3.0
	1-1/8	0.554	0.849	10.430	0.398	0.799	8.419	108	3.4
	15/32	0.067	0.246	4.503	0.021	0.147	2.405	45	1.4
	1/2	0.078	0.271	4.908	0.029	0.178	2.725	48	1.5
	19/32	0.116	0.338	5.018	0.034	0.170	2.811	57	1.8
= 100	5/8	0.131	0.361	5.258	0.045	0.177	3.073	60	1.9
tura	11/16	0.167	0.418	5.621	0.051	0.249	3.493	66	2.1
Structural I	23/32	0.183	0.439	6.109	0.085	0.338	3.780	69	2.2
	3/4	0.202	0.464	6.189	0.108	0.418	4.047	72	2.3
	7/8	0.317	0.626	7.539	0.179	0.579	5.991	84	2.6
	1	0.479	0.827	7.978	0.177	0.870	6.981		3.0
La la	1-1/8 nding calculations and use (or	0.623	0.955	8.841	0.474	1.098	8.377	96 108	3.4

any reuse is desired. Plywood grades and types are defined in a commercial standard, NIST PS 1-09, "Structural Plywood." The product standard defines grades of veneer—N and A through D—depending on the freedom of the surface from knots and other defects. Grades B-B and B-C are commonly used for formwork. B-B has both faces of B-grade veneer, which is a smoothly sanded solid surface sheet with repair plugs and small tight knots permitted. B-C has one face of C-grade veneer, which allows small knots, knot holes, and patches. The product standard also establishes three classes of plywood depending on the kinds of woods used in manufacture—Class I, Class II, and Structural I. Class I and Structural I are stronger and stiffer than Class II, and also the most widely available.

The standard further provides that plywood labeled as concrete form-grade shall be mill oiled unless otherwise agreed between buyer and seller. Mill oiling does not eliminate the need for oiling on the job, but mill-oiled plywood does give better service than that which is job treated only. Some form release agents require an unoiled base. If the use of such agents is planned, it is important to specify unoiled plywood. Edge sealing of plywood adds protection against moisture and is recommended before the first use of any concrete form plywood. Moisture ingress through unprotected edges may cause swelling and deterioration of wood layers even though the glue itself is waterproof. Plywood designated OES indicates it has been oiled and edge-sealed during manufacture. Resealing the edges and tie holes after a number of uses, or sealing freshly cut edges, helps prolong the life of the forms.

It is a good practice to specify panels carrying the mark of an approved inspection and testing agency that indicates type and grade, species of veneer, and conformance with applicable standards. If there is any doubt as to quality of plywood purchased, a certification of type and grade may be requested. Structural properties of Class I and Structural I Plyform are listed in Table 4.13 based on APA V345V-2012, "Concrete Forming – Design/Construction Guide."

ACI SP-4 (14) Formwork for Concrete

nl.dorm (used wet)	eference and adjusted decisions.
4.14: Plyto.	eterence and adjusted design values for Class I and Structural I

		D-6	Concrete setti	ng factor $C_{i} = C_{e} \times C_{p}$	The last	Adjusted de	sign value fo
	Value	Reference design value used wet, psi	Experience factor	Duration factor		$C_o = 1.0$,	C _p = 1.25
Bending	F _b ' =	$(F_b = 1190)$	$(C_s = 1.3)$			1545	1933
ng shear (Class I)	F, '=	$(F_{ci} = 44)$	(C _a = 1.3)	C _D	=	57	72
shear (Structural I)	F, ' =	$(F_n = 63)$	(C _a = 1.3)	C _D	=		102
shear (Sirve	F ' =	$(F_{cl} = 210)$	10, - 1.31	C _D	=	82	263
saring of rous			_	Co	=	210	203
us of elasticity (for deflection when shear in is not considered)	E' =	(E = 1,500,000)	-		=	1,500,000	1,500,000
of elasticity (for street	E,' =	(E _e = 1,500,000)	-	and the same	=	1,500,000	1,500,000
lus of elasticity (for deflection when shear fion is considered) from APA Form No. V345V 1	E' =	(E = 1,650,000)			=	1,650,000	1,650,000

13.4 Textured Surfaces

13.4 leater range from the very smooth PSF and HDO to striations, wood grain, or wood design of the plywood is transand to the concrete, providing decorative surfaces that may have a marked reduction in intreflection and glare.

giterior-type textured plywood may be used as a form liner or as the basic forming Fewer reuses of textured panels can be expected because the repeated stripping mages plywood. Coating the plywood with a film-forming material such as epoxy or along with the use of a proper release agent, will make stripping easier and Now more reuses of the material.

13.5 Strength Properties

® values for plywood are based on the strength properties and reference design values tr wood as determined by the U.S. Forest Products Laboratory. Recommended reference sign values and ASD adjusted design values for Plyform sheathing are included in Table 114 for the most commonly used formwork grade of plywood from APA V345V. Design alues for other grades should be based on tables in APA D510C-2012, "Panel Design oedification," or other manufacturers' recommendations.

Table 4.14 includes the reference design values, usual adjustment factors for formwork applications, and the adjusted design values for Class I and Structural I concrete form lywood. Design values shown in Table 4.14 have already been adjusted for wet use as Recommended by the plywood manufacturers because form sheathing will generally atome wet when loaded with fresh concrete. For high-density overlaid plywood or wood coated on the job to make it impervious to moisture, higher design values are termissible because the reduction for moisture no longer applies.

Pywood sheathing acts as a beam, but plies with grain running perpendicular to the ontribute little to the bending strength and stiffness of the panel. Table 4.13 gives Reffective section properties for various thicknesses of plywood for two cases—face esparallel to the plywood span and face plies perpendicular to the span. For a given $\frac{1}{1000}$ ickness of plywood panel, I and KS are larger when the face grain is parallel to the span. It is referred to as using plywood the strong way. Conversely, plywood with its face grain ependicular to the span is said to be used the weak way. Due to involved considerations incerning properties of plywood, the effective moment of inertia I divided by distance to dreme fiber c does not equal effective section modulus KS (Table 4.13). Therefore, effecesection modulus, KS, as tabulated should be used for all bending stress calculations moment of inertia, I, should be used only for deflection calculation.

3.6 Bending Plywood to Curved Surfaces

Ple curves with radii not less than 24 in. can readily be made in plywood form tathing. Table 4.15 shows minimum radii for bending panels that are manually nailed. that shorter radius curves can be obtained when plywood is bent across the grain. other radiis curves can be optained when ply westing or steaming, but this

Reference Material

MZB ENGINEERING, INC

<u>TEL:949.254.4792</u> <u>engineering@mzbinc.com</u>

www.mzbinc.com

Safe Handling and Use of Trench Shores

By removing the shoring installer from the unshored trench and making shoring equipment more available and easy to install, trench jacks have no doubt had a huge impact on excavation safety. Utilizing trench jacks for shoring still has safety hazards that users should understand and protect workers from these hazards. These things happen rarely however it is still important that workers be informed of the risks they are taking before placing them at risk. The following are hazards and safety procedures associated with the use of trench jacks

- Injury to back and muscles from lifting heavy objects An 8 ft long 52x88 extension trench jack weighs approximately 120 lbs. A two-man crew can safely lift, set and remove it from the trench. Anything longer or heavier should be lifted and set with equipment such as a backhoe or boom truck.
- Overhead lifting hazard When jacks are being hoisted by sling from a tractor bucket or boom truck, the swinging jack presents a hazard to workers guiding it. Loose plywood and rocks can also fall off onto workers. Workers should stand clear and guide with a lead rope.
- Finger and hand protection Trench jacks have moving parts at the connection between the cylinder and the rail. When the jack swings open fingers can be crushed under the cylinder block and when it is swung closed fingers can easily be sheared off if they are between the block and the rail leg. When the hydraulic hose is being connected to the block, fitting and when the jack is being lifted by hand shearing and crushing is most likely to happen.

Awareness through safety instruction and hand placement a safe distance, 12", from the blocks is safe practice. Trench jacks may have optional finger guards however, it is still possible to get fingers under the block and wrists cut and banged when the jack folds or unfolds. See **Figure 15.**

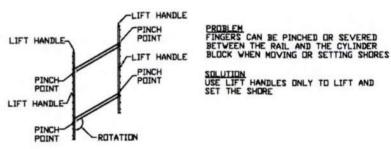


Figure 15. Trench Safety issues

 Bank collapse with worker standing on it - When the jack is being set it is still possible for the trench wall to collapse from the additional weight and activity going on around it.
 Trench jack installation should closely follow the excavation activity.

During jack removal, the arch column is being literally removed with the load still on it. Pipe bedding and initial backfill cut the trench depth adding some stability prior to removing the jack. If backfill operations are closely following jack removal, the length of unshored collapsible trench wall becomes short. Soil arching back to the backfilled area is likely and trench wall failure becomes less likely. Remote backfill operation such as Page 63 of 74

excavator wheel or vibraplate, or remote operated compactors must always be used for compaction outside the shored area. When trench jacks are being removed to allow pipe installation and then reset there is a greater likelihood of trench wall collapse. Equipment and personnel in close proximity are at risk of loosing the ground under their feet. Keep equipment and personnel except those needed to remove the jack a safe distance away. This type of operation is not uncommon and most often works safely, however if there is any evidence of trench wall collapse the operation should be discontinued and a different method of getting production materials into the trench or a different shoring system should be used. Several bad accidents have occurred in conjunction with this type of operation.

- Get the surcharge loads right Equipment over 20,000 lbs and large spoil piles over 2 ft high quickly add additional surcharges, especially in the top 10 ft, that can easily overload the trench jack. If one cylinder fails, a progressive failure to the bottom of the trench and then down the length of the trench is possible. A boom truck or backhoe outrigger placed next to a trench jack can trigger this. The way to adjust for additional surcharge load is to move the load away from the trench, spread the load with timber pad or steel plate, or decrease the trench jack spacing. Centering the load on the jack, places most of the load on that jack. The alternative, centering the load between the jacks distributes the load evenly between the jacks, however it increases the possibility of the arch void to fall out or arch shear failure at the jack. One alternative may not be any better than the other.
- Trench Jack fold-up failure - If all of the iacks were unfolded into the trench from one side of the trench, it is possible to get a bank failure that can lift the rotating jack leg. This type of failure is not common; however, the author has spoken with more than one worker that has. fortunately from outside the trench. witnessed this type of failure.

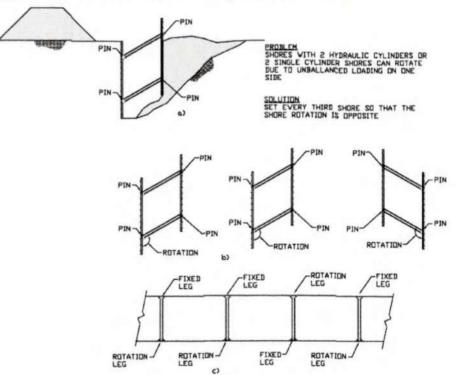


Figure 16. a) Trench jack fold up failure, b) leg rotation, c) jack rotation to prevent fold up failure

No workers were inside the trench. The story goes that 40 ft of trench folded up the jacks and collapsed. The solution is to rotate the jack so that the rotation leg is on the other side of the trench. The problem is that the installers have to move to the other side of the trench to set and pressurize the jack. Two soil conditions that this would be most likely to happen are in medium dense to loose non-cohesive soils and soft clays with high surcharge loads. See **Figure 16**

- Loose trench jacks in the trench Jacks that are not pressurized in the trench are not setting up arching and preventing trench collapse. In this condition the jacks can also fall down on workers below them. Jacks should not leak at all. Pressure can change slightly up or down due to temperature changes or increase due to loading however it should never loosen up in the ditch. If jacks are left overnight they should be checked before entering the trench in the morning. Simply tap them with a hammer or bar of metal, they will sound loose if they are. Remove and replace jacks that bleed off.
 If the trench wall has voids where the cylinder hits the wall, use wood blocking to extend the connection to the soil.
- Non-vertical trench walls Trench walls that are not vertical, an inverted A shape, the
 trench jack is not stable. Assuming a coefficient of friction of 0.1 between the soil and the
 aluminum rail and applying a factor of safety of 1.5 calculations indicate that the slope of
 the trench wall should not exceed 3 degrees or the jack will lift up and fail to provide an
 arching point.
- In trenches that are sloped above, extending the jack 18" above the hinge point does not
 provide roll off protection for workers below due to the fact that the jack is spaced. Place
 fabric or boards behind the jack rail to stop objects at the surface and bank ravel from
 falling on workers, See Figure 17.

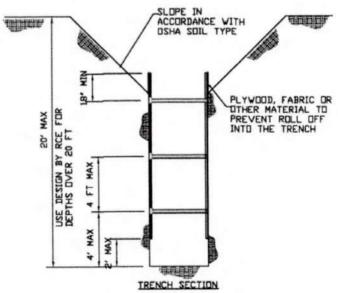


Figure 17. Trench Safety issues

31

Subpart P Additional Requirements Related to Hydraulic Shoring with Commentary

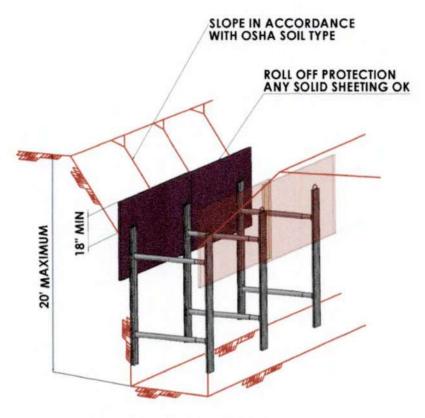
The following are excerpts from Subpart P that are relative to hydraulic shoring use.

1926.652(e)(1)(ii) Support systems shall be installed and removed in a manner that protects employees from cave-ins, structural collapses, or from being struck by members of the support system.

1926.652(e)(2)(ii)

Installation of a support system shall be closely coordinated with the excavation of trenches.

Commentary - Hydraulic shores were developed so that they could be installed and removed from outside the excavation. Cave-in from the surface is still a hazard while installing and removing the shore. Hydraulic shores should be installed as soon as possible after the trench is excavated. This means that if the shores are being installed horizontally at 6 ft on center there should be no more than 6 to 10 ft of trench unshored at any time. It is not acceptable to open a length of trench and then go back and install the shores later.


When hydraulic shores are being removed use caution, stand away from the trench edge and backfill as close to the shore removal location as possible.

It is not allowed to remove and replace a hydraulic shore in order to install production work that will not fit within the shore spacing. If a hydraulic shore is being removed and replaced in order to set pipe into the excavation the soil arching support that was originally set up is being removed similar to removing a column from under an arch. Collapse is imminent and can occur immediately or at the time of resetting the shore.

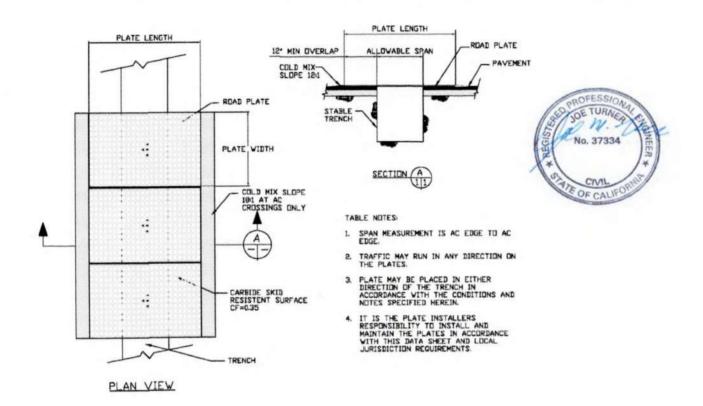
1926.652(f) Sloping and benching systems. Employees shall not be permitted to work on the faces of sloped or benched excavations at levels above other employees except when employees at the lower levels are adequately protected from the hazard of falling, rolling, or sliding material or equipment.

Commentary - When hydraulic shores are used in sloped excavations without sheeting some form of roll off protection must be provided.

32

SLOPED EXCAVATIONS

1926.652(e)(2)(i) Excavation of material to a level no greater than 2 feet (.61 m) below the bottom of the members of a support system shall be permitted, but only if the system is designed to resist the forces calculated for the full depth of the trench, and there are no indications while the trench is open of a possible loss of soil from behind or below the bottom of the support system.


Commentary - Either the rail or the plywood must be within 2 ft of the bottom of the excavation.

1926.652(d)(2) Manufactured materials and equipment used for protective systems shall be used and maintained in a manner that is consistent with the recommendations of the manufacturer, and in a manner that will prevent employee exposure to hazards.

Commentary - Daily inspections are required to check for equipment malfunctions.

ROAD PLATE WITH or WITHOUT CARBIDE SKID RESISTANT SURFACE TABULATED DATA Effective 11-15-16

Plate Thickness	Allowable Span		Pla	te Size / V	Veight		
	25	Size	4'x5'				
	2.5	Weight (lbs)	816				
		Size	4'x6'	4'x8'			
		Weight (lbs)	979	1306			
		Size	5'x8'	5'x10'			
1"		Weight (lbs)	1632	2040			
	4.5	Size	6'x8'	6'x10'	6'x12'		
		Weight (lbs)	1958	2448	2938		
		Size	8'x10'	8'x12'	8'x15'	8'x16'	8'x20'
		Weight (lbs)	3264	3917	4896	5222	6528
To the last		Size	8'x10'				
1.25"	7'	Weight (lbs)	4080	la Harri		(demonstrated)	Lava de
		Size	8'x12'	8'x15'	8'x16'	8'x20'	
1.5"	10'	Weight (lbs)	5875	7344	7834	9792	

		STEEL	ROAD	PLATES	Acres de la constante de la co		
Plate Thickness	Allowable Span		P	late Size /	Weight		
		Size	5'x10'				
		Weight (lbs)	4080				
2-1"	8'	Size	6'x10'	6'x12'			
2-1	8	Weight (lbs)	4896	5875			
		Size	8'x10'	8'x12'	8'x15'	8'x16'	8'x20
		Weight (lbs)	6528	7834	9792	10445	1305
2-1.25"	11'	Size	8'x15'	8'x16'	8'x20"		
2-1.25	11	Weight (lbs)	14688	15667	19584		
		Size	8'x20'				
2-1.5"	15'	Weight (lbs)	19584				

General Conditions

of the excavation

ROAD PLATE WITH or WITHOUT CARBIDE SKID RESISTANT SURFACE TABULATED DATA Effective 11-15-16

- 1. Plates are minimum ASTM A36 Min Fy= 36 ksi
- Trench plate installations including cold mix ramping within the City of Los Angeles and all
 pavement repairs shall be in accordance Los Angeles Public Works Standard S-601-3, WATCH
 Manual and all other jurisdiction requirements.
- 3. Plates are designed for HS20-44 and HL-93 axel loading with 1.33 impact factor
- 4. Design is based on allowable bending strength
- 5. Minimum overlap is 12"
- 6. There shall be no paint on the surface of the road plates.
- 7. When skid resistance is required, the non-skid surface shall have a dynamic coefficient of friction of 0.35 per California Test Method No. 342 or equivalent skid number of 0.35 as tested per ASTM E274. Any trench plate with non-skid surface less than specified frictional resistance shall be removed and replaced
- 8. This data sheet applies to general use in all locations, areas where skid resistance is required and where it is not required.
- All road plates with carbide skid resistant surface are manufactured in Trench Shoring Company Plant at 206 N. Central Ave., Compton, CA 90220.
- 10. All tops of the road plates must be flush.

CER, Inc.
Construction Engineering Resource, Inc.
1837 Wright Street
Santa Rosa, CA 95404
(707) 484-4704 jmtengr2@aol.com

SUBMITTAL TRANSMITTAL

TO:			ounty Public Works			60
			ement Division III, 8th Floor	SUBMIT		
	900	S Fremont	Ave, Alhambra, CA 91803	NUMBE	R:	
	Atte	ention: Mr. N	lavid Ehsan			
FROM:	Dor	ninguez Ge	neral Engineering, Inc.	DATE		09/25/2024
		96 Pipeline		REQUES	STED:	
		nona, CA 9				
PROJEC	CT: C	COASTLINE	E DRIVE 12-INCH WATERLIN		OVEME	NTS PROJECT
			(PROJECT ID NO. WWD29	00063)		
SUBMITT						
SUBJEC			Shoring Plan			
SPECIFIC	_	_				
PARAGR						
NUMBER		:				
NUMBER						
OF PAGE	S		35			
NUMBER						
OF COPIE	S	DATE	DESCRIPTION			
			Shoring Plan			
1		02/21/2025			ı	1
TRANSMI	TTEL		Namuai al		DATE.	00/04/0005
BY:		Jesus C	Jarvajai 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮		DATE:	02/21/2025
_						
REVIEW C	<u>OMM</u>	ENTS				
Please prov	vide p	oroject spec	ific plans (plot plan and sections) with the	responsil	ole engineers
			plans. Please provide any refere			
			er data sheets and diagrams etc			•
			ne data sheets. Note: addition sh			
provided in	tne p	project spec	ifications, such as minimum activ	ve and su	rcnarge p	ressures.
The plan of	nall in	clude the tv	pes of shoring that is proposed	at various	nortions	of project
			horing is to be constructed to, ar			
	_		etail related to the shoring such a	•		•
			nd limitation on live loading adja			
			tions including Section 306-4.3			
of Public W	orks/	Standard P	lan 3090-1 for shoring plan subn	nittal requ	irements.	
REVIEW E	2V·	Halian	Mayonavian	D/	ATE: 3	00.0005
LL AICAA C	<i>J</i> I .	<u>накор</u>	Meymarian	ען	~ı∟. 3	-20-2025

Cc: File - Submittal # _____

underground excavations shall be in accordance with the Tunnel Safety Orders of the State of California, Department of Industrial Relations.

Prior to the beginning of work, the Contractor shall designate in writing to the Engineer someone whose responsibility it is to supervise the installation and removal of sheeting, shoring and bracing.

306-4.3 Submittals.

The Contractor shall prepare and submit in accordance with 3–8 Working Drawings and supporting information for its proposed shoring system showing the reaches, design criteria, calculations, sketches, sequence of placement and removal, and other data required in order to shore the excavation for the appropriate cases of shoring expected to be used on the Project. Where shields are to be used, the Working Drawings shall include a typical cross section of the proposed conduit showing adjacent utilities. If a previously approved shield is to be used, submittal of calculations for the shield are not required if the current calculated load does not exceed the load for which the shield was previously approved. If it is requested that the limitation on the use of shields in the vicinity of existing utilities be waived, the submittal shall also include the written statements from the affected utility owners and Working Drawings and calculations of the required utility support. The submitted Working Drawings shall be of the same format as that shown on LACDPW Standard Plan 3091. In particular, the Working Drawings shall indicate the methods of sheeting, shoring and bracing which will be used, applicable reaches, and the installation and removal sequence. The Working Drawings shall also show the positioning of said sheeting, shoring and bracing with respect to the planned location of the proposed structures. Existing improvements which may be affected by the proposed excavation shall also be shown. It is the Contractor's responsibility to submit to the Engineer all test data and calculations required to substantiate the load supporting ability of special components of shoring systems such as screw jacks, speed shores, etc.

Partial submittals will be rejected. Submittals shall include the following:

- a) Shoring plans which show on each sheet the Project title, sheet number, total number of sheets, and wet stamp and signature of the California Registered Civil or Structural Engineer responsible for the design.
- b) Limits of application for the shoring design, with beginning station and end station.

65 SECTION W

- c) Working Drawings (plans, sections, elevations, and details), material specifications, notes, construction and removal procedures, etc. necessary for the construction and inspection of the shoring system.
- d) Supporting calculations prepared by the responsible Registered Civil or Structural Engineer, who will wet stamp and sign the first sheet of these calculations. The calculations shall show and justify the design loads on the shoring. The calculations shall also show the capacity of the shoring system is adequate to withstand the imposed loads.
- e) Shoring design criteria. A sample of some of the information required is shown on LACDPW Standard Plan 3091.
- f) Notes as shown on LACDPW Standard Plan 3091.
- g) A statement confirming the Contractor has reviewed the proposed shoring Working Drawings and found them compatible with the site conditions and proposed construction methods.
- h) If shields are proposed, the shoring Working Drawings shall show the limits of Zone A and Zone B offset from the toe of excavation as delineated on LACDPW Standard Plan 3090 Case 4. The shoring designer shall verify the field condition and state on the Working Drawings that the design conforms to the requirements shown in Section D "SHIELDS" on Sheet 4 of LACDPW Standard Plan 3090.

The submittal package shall also include:

- i) Manufacturer's specifications and other data necessary for the review of the proposed shoring as applicable.
- j) Traffic Control Plan, *if not included with the Plans*, if it affects the live load surcharge or the aforementioned Zone A requirements on the shoring system.

306-4.4 Agency Review.

A review of the submitted Working Drawings and supporting information will be performed by the Agency. The review will be for the purpose of determining that the following items have been considered and are in accordance with the stated criteria.

a) Soil Loads.

GENERAL MINIMUM REQUIREMENTS (CONT.)

- SPECIAL SHORING SYSTEMS
 SYSTEMS SUCH AS SPEED-SHORE, TREN-SHORE, ETC., WILL BE ALLOWED ONLY IF THE CONTRACTOR FILES OR HAS FILED WITH THE DEPARTMENT SUBSTANTIATING CERTIFIED TESTS CLEARLY DENOTING THE CAPACITY OF THE SYSTEM. UNTESTED MEMBERS OF SPECIAL SYSTEMS, COMPOSITE MEMBERS, BUILT-UP MEMBERS, ETC., MUST BE THEORETICALLY DESIGNED. VERTICAL SHORES MUST BE AT LEAST 200mm(8") WIDE. STRUTS TESTED UNDER IDEAL OR LABORATORY CONDITIONS SHALL BE USED WITH A MINIMUM SAFETY FACTOR OF 1.5.

SHIELDS
I. SHIELDS ARE ACCEPTABLE AS A MEANS OF SHORING EXCAVATIONS.

AS SHOWN ON CASE 4. WITH THE FOLLOWING RESTRICTIONS.

a. ZONE A SHALL NOT INTERCEPT PROPERTY LINES OR INTERCEPT

AN AREA REQUIRED BY THE SPECIFICATIONS FOR TRAFFIC.

ZONE A SHALL NOT CONTAIN ANY EXISTING UTILITY OTHER THAN METALLIC ELECTRIC CONDUITS OR PIPE IOOmm(4°) OR LESS IN DIAMETER USED FOR LOW PRESSURE GAS DISTRIBUTION.

ZONES A AND B SHALL NOT SUPPORT SURCHARGE DEAD LOADS SUCH AS PILING OR BUILDINGS.

RESTRICTIONS STATED IN 6 ABOVE WILL BE WALVED PROVIDED.

SUCH AS PILING OR BUILDINGS.
THE RESTRICTIONS STATED IN 6 ABOVE WILL BE WAIVED PROVIDED
THE CONTRACTOR SUBMITS WRITTEN APPROVAL FROM THE OWNER OF
THE UTILITY FOR THE PROPOSED CONSTRUCTION METHOD, THE
CONTRACTOR COMPLIES WITH ANY SUPPORT OR PROTECTION METHODS
REQUIRED BY THE UTILITY COMPANY, AND THE OWNER OF THE
UTILITY STATES, IN WRITING, THAT THEY WILL ACCEPT
RESPONSIBILITY FOR ALL CLAIMS FOR DAMAGES THAT MAY ARISE
AS A RESULT OF DISTURBANCE TO THE UTILITY. AN ACCEPTABLE
SHORING SYSTEM MUST BE INSTALLED WHEN THE SHIELD IS
REMOVED.

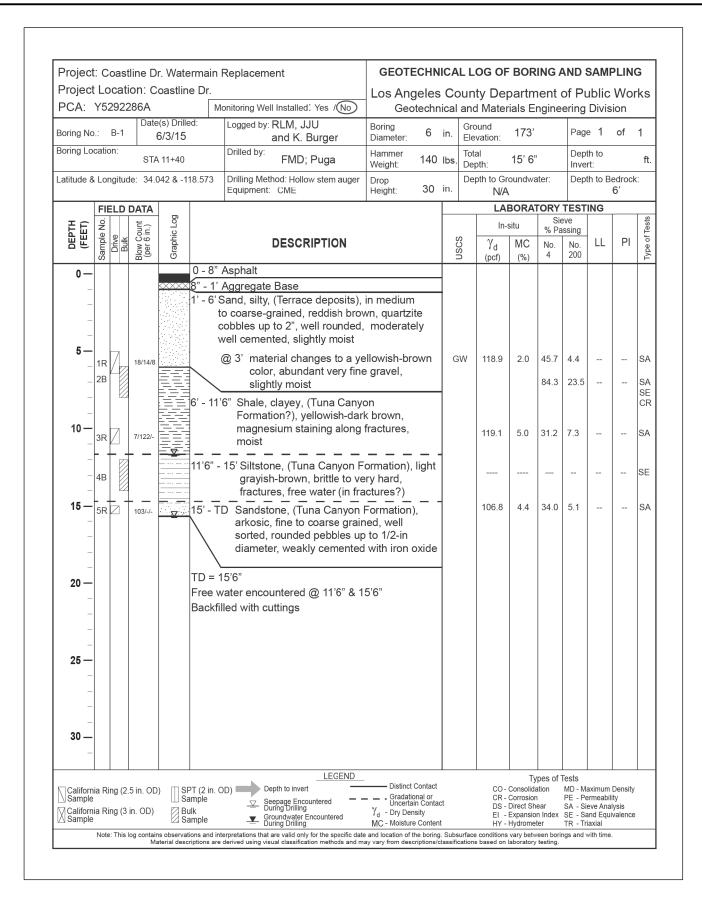
THE LENGTH OF UNSUPPORTED TRENCH IN FRONT OF THE SHIELD SHALL BE 2.5m(9'-0") MAXIMUM FROM THE FORWARD EDGE OF THE SHIELD TO THE TOE OF SLOPE BEING EXCAVATED. SHIELDS SHALL CONFORM TO THE DESIGN CRITERIA NOTED HEREON.

TEMPORARY BRIDGES
PLANS AND CALCULATIONS FOR SHORING SYSTEMS AT TEMPORARY BRIDGES
SHALL MEET THE REQUIREMENTS OF SUBSECTION 7-10.3.6(7) AS AMENDED.

CALCULATIONS AND DRAWINGS
SHORING SYSTEMS SHALL BE DESIGNED BY A CIVIL OR STRUCTURAL ENGINEER
REGISTERED IN THE STATE OF CALIFORNIA.

A. COMPLETE CALCULATIONS MUST BE SUBMITTED TO THE DEPARTMENT
NOTING ALL ASSUMPTIONS AND REFERENCES. CALCULATIONS SHALL BE
BASED ON STANDARD METHODS AND PROCEDURES BY RECOGNIZED AUTHORITIES. COMPUTER PRINTOUTS AND OTHER SUBMITTALS THAT DO NOT
CLEARLY INDICATE THE COMPUTATION METHOD WILL NOT BE ACCEPTED.
CROSS-SECTIONS OR SKETCHES SHOWING THE LOCATION OF EXISTING
IMPROVEMENTS AND UTILITIES SHALL BE INCLUDED WHEN THE TYPE OF
SHORING IS AFFECTED.

SHORING IS AFFECTED.


DEPARTMENT STANDARD PLAN 3091 SHOWS THE FORMAT THAT IS TO BE USED. HOWEVER, THE SUPPORTING CALCULATIONS MAY BE ATTACHED ON

LETTER-SIZED PAPER.

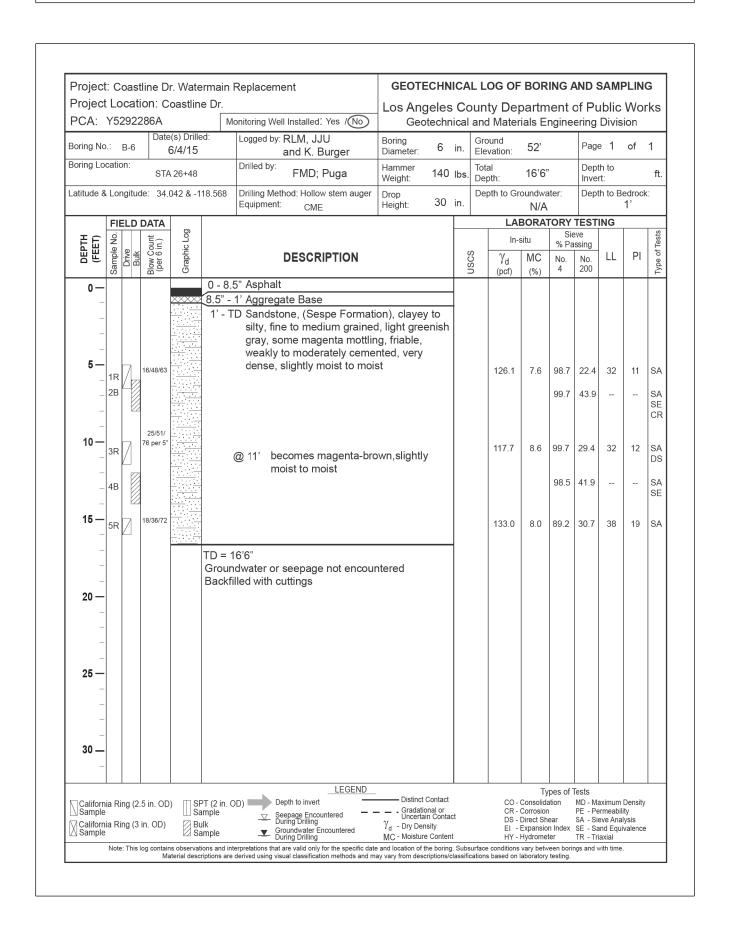
ACCEP TANCE IF FOUND IN CONFORMANCE WITH THIS DRAWING AND THE SPECIFICATIONS. THE DEPARTMENT WILL INDICATE ACCEPTANCE BY SIGNING THE SUBMITTED DRAWINGS. IF THE METHOD SELECTED AND ACCEPTED BY THE DEPARTMENT DOES NOT PROVIDE ADEQUATE SUPPORT UNDER ACTUAL FIELD CONDITIONS. IT SHALL BE REPLACED WITH AN ACCEPTED ALTERNATE. THE DETAILS ARE ALSO SUBJECT TO THE REVIEW OF THE DIVISION OF INDUSTRIAL SAFETY. ANY DEVIATION FROM THE ACCEPTED DESIGN MUST BE APPROVED BY THE DEPARTMENT.

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS

CRITERIA FOR THE DESIGN OF SHORING FOR EXCAVATIONS STANDARD PLAN METRIC SHEET 4 OF 4

Project Project PCA:	t Lo	cati	ion: C 286A	oastlin	e Dr.	Replacement Ionitoring Well Installed: Yes /No	GEOTE Los Ang Geo	geles	Сс		Эер	artm	ent	of Pu	ıblic	Wo	
Boring No	o.:	B-2		e(s) Drille 6/3/15	ed:	Logged by: RLM, JJU and K. Burger	Boring Diameter:	6	in.	Ground Elevatio	n:	159'		Page	e 1	of	1
Boring Lo	catio	on:	STA	14+22		Drilled by: FMD; Mendoza	Hammer Weight:	140	lbs.	Total Depth:		16'		Dept			
Latitude 8	& Lor	ngitud	de: 34.0	042 & -1	18.572	Drilling Method: Hollow stem auger Equipment: CME	Drop Height:	30	in.	Depth to	Gro	oundwa N/A		_	h to B	edroc 6'	k:
	FIE	LD	DATA				1				LAE	BORAT		TEST			_
E.E.	\vdash			Log							In-s	situ		eve issing			T
DEPTH (FEET)	Sample No.	Drive Bulk	Blow Count (per 6 in.)	Graphic Log		DESCRIPTION			0	γ (po		MC (%)	No. 4	No. 200	LL	PI	
0 —					0 - 8".	Asphalt			-) (pt	,1)	(70)					+
_	-			××××	8" - 1'.	Aggregate Base											
- - -	-					Sand, silty, (Terrace deposits) up to 20%, angular, yellowishmoist		esent									
5 —	1R	7	13/17/21	0.0.0					GM	/GC 11	8.0	6.2	56.4	21.4	29	7	
-	2B				6' - 11'	'6" Shale, clayey, (Tuna Canyo orange-brown, fractured, fi contact with sandstone in t	rm, moist,	•					91.5	61.3	30	13	
10 —	3R		14/24/50										80.3	43.9	26	8	
_	4B					TD Sandstone, (Tuna Canyor silty, very fine-grained, da fractured	rk gray,	•					93.4	66.9	30	14	
15 —	5R	Z	45/78/-		(@ 16' similar material as abov 15% more sand	e, except v	with		120	0.0	5.1	83.9	31.5			
-						16' Idwater or seepage not encour Iled with cuttings	ntered										
20 —	-																
25 —	-																
_ _ _	-																
30 —																	
	1				1	LEGEND	. Distinct	Contact		1			pes of			_	
Californ Sample Californ Sample	9		.5 in. OD in. OD)		PT (2 in. C Imple Ilk Imple	DD) Depth to invert Seepage Encountered During Drilling Groundwater Encountered During Drilling	Distinct Gradatic Uncerta γ _d - Dry Den MC - Moisture	onal or in Contac nsity			OR - (OS - [El - E	Consolida Corrosion Direct Sho Expansion Hydromet	ı ear n Index	MD - Ma PE - Pe SA - Si SE - Sa TR - Tr	ermeabil eve Ana and Equi	ity Iysis	

Projec						Replace	ement					L LOG (
Project PCA:				oastiin		onitorina \	Nell Installe	ed: Yes /(No				ounty D and Ma						rk
				e(s) Drille			by: RLM,		Boring			Ground						_
Boring No			(6/3/15		Daille d b		Burger	Diameter:	6	in.	Elevation	140)′ 		je 1	of	1
Borning LC	callo	1.	STA 1	7+41		Drilled b	y: FMC	; Aldrete	Hammer Weight:	140	lbs.	Total Depth:	16		Inve	oth to ert:		
Latitude 8	Lon	gitud	e: 34.0	043 & -1	18.571	Drilling N		low stem aug	ger Drop Height:	30	in.	Depth to	Ground N/		Dep	th to B	edroc	k:
	FIE	LDI	DATA			Equipino	, , , , , , , , , , , , , , , , , , ,	CIVIE	Ticigit.		Τ	L	ABOR		Y TEST	ING	<u>'</u>	
Ŧ Œ	\vdash		Count 6 in.)	Log									In-situ		Sieve Passing			
DEPTH (FEET)	Sample No.	Balk	Blow Co (per 6 ii	Graphic Log			DESC	RIPTION				$\gamma_{\rm d}$		No.	No. 200	LL	PI	
0 —	S	\dashv	<u> </u>	0	0 - 7"	Asphal	<u> </u>				+) (pcf) (%) -	200			+
_				XXXX			ate Base	<u> </u>										
-					1' - TD	Siltstor	e, (Tuna	Canyon Fo	ormation), d	ark	1							
_				=====		gray, h	ard, fractı	ured										
-																		
5 —	 	7	27/									117.	1 4.	5 54.9	9 19.8			
-	1R 2 2B		53 per 4"									'''	. 1.	90.4				,
_	28			======										90.2	43.6			1
				=														(
10 —		_		=														
-	3R	/	37/50/ 48 per 4"									128.	9 3.0	53.1	16.0			5
-	ľ				(@ 11'4"	clay part	tings, sligh	tly more cer	nente								
-	4B													-				5
-		1/2		====														
15 —	5R	7	52/66/-	▽		അ 16' w	ell cemer	nted, free v	vater			120.	5 3.	8 60.1	17.1	23	6	5
_							eli cerriei	ned, nee v			4							
_				1	TD = 1	-		d @ 16'										
-							countered cuttings	1 (2) 16										
20 —							outgo											
_																		
25 —																		
-																		
-																		
_																		
30 —																		
JU —																		
Californ	ia Dir	ומ (כי ו	5 in ∩∩) [1] 0[PT (2 in. C	וחו	Depth to inve	<u>LEGENI</u> ert	— Distin	ct Contac		C	O - Consc	Types o		1aximum	Density	v
		-		′ ∐ Sa	ample	_ ▽	Seepage En During Drillin			tional or tain Cont	act	C	R - Corros S - Direct	sion	PE - P	ermeabi ieve Ana	lity	,
Califorr Sample	ia Rir	g (3 i	n. UD)	Bu Sa	ılk ample	_	Groundwater During Drillin	r Encountered ig	γ _d - Dry D MC - Moist		nt	E	i - Expan Y - Hydro	sion Inde		and Equ		е
	Note:	This lo	og contair	ns observat	ions and int	erpretations		nly for the specific	date and location of	f the borir	g. Subs	urface conditi			rings and).	


Project PCA:	Lo	cati	on: C		e Dr.	Replacement onitoring Well Installed: Yes /(No)	Los Ang	geles	Сс	L LOG OF unty De	partn	nent	of Pu	ublic	Wo	
PCA.	132	.922		(s) Drille		Logged by: RLM, JJU	Boring	tecnn	icai	and Mater		ngine	T			_
Boring No			(6/3/15		and K. Burger	Diameter:	6	in.	Elevation:	111'		Pag	e 1	of	1
Boring Loc	catio	n:	STA	20+50		Drilled by: FMC; Aldrete	Hammer Weight:	140	lbs.	Total Depth:	16'6"		Dep Inve	th to rt:		
Latitude &	Lon	gitud	e: 34.0)42 & -1	18.570	Drilling Method: Hollow stem auger	Drop	20		Depth to Gr		ater:	_	th to B		K:
						Equipment: CME	Height:	30	ın.		N/A BORA	TORY	TEST	6'6	6"	_
ΞC	_	LDI	DATA	Log							situ	Sie	eve	ING		T
DEPTH (FEET)	Sample No.	Bulk	Blow Count (per 6 in.)	Graphic Log		DESCRIPTION			ا ا		MC	No.	No.	LL	PI	
	San	<u> </u>	Blov (pe	Gra					000	(pcf)	(%)	4	200			
0-						Asphalt Aggregate Base			-							
_				××××		"Sand, silty, (Fill), sporadic gr	ravel. light									
_				0.0.0.		brownish-gray, loose, moist										
_				0.00	(@ 6'6" poor recovery, fine to r dark gray color, few gr										
5 —	NR	7	7/7/7	0 0 0	(@ 5' No Recovery	avoio (070)									
_	2B			00		ΓD Sandstone, (Sespe Forma	ation) clav	ev to				97.8	34.1	32	15	s
	20				00-1	silty with sporadic gravel,	fine to med					07.0	34.1	52		C
_						grained, contains very few pebbles (3%), medium re-		to								
10 —	20	7	6/9/7			3/4", very moist	u-brown up	10		400.0	40.0	00.5	00.4			
-	3R									108.9	10.2	83.5	23.4			S.
	4B											96.9	33.2	32	15	S
_																
15 —	5R	7	6/9/11							94.2	12.5	99.6	26.6			S
-	/			<u> Marie e Sar</u>		@ 16' increased moisture con	tent, color			01.2	12.0	00.0	20.0			
_						changes to magenta br	own									
_					TD = 1											
20 —						dwater or seepage not encou lled with cuttings	ntered									
_					Buokin	iod with oddingo										
-																
25 —																
-																
-																
30 —																
-																
						LEGEND	- Diatinat	Contact		ı	-				_	_
☐ Sample	California Ring (2.5 in. OD) SPT (2 in. OD) Depth to invert Distinct Contact Co - Consolidation MD - Maximum Density															
Californi Sample	California Ring (2.5 in. OD) SPT (2 in. OD) Depth to invert Conditional or CREATING CO. Consolidation MD - Maximum Density															
						erpretations that are valid only for the specific da					,					

Project						Replacement				L LOG OF						
PCA:				00011111		onitoring Well Installed: Yes /No				ounty Dep and Mater						KS
Boring No).:	B-5		e(s) Drille 6/4/15	ed:	Logged by: RLM, JJU and K. Burger	Boring Diameter:	6	in.	Ground Elevation:	80'		Page	e 1	of	1
Boring Lo	catio	n:		A 23+64		Drilled by: FMD; Puga	Hammer Weight:	140	lbs.	T-4-1	16'6"		Dept			ft.
Latitude 8	Lon	gitud	le: 34.	.042 & -	118.569	Drilling Method: Hollow stem auger	Drop	30		Depth to Gr		ater:	+	th to B		C.
	FIE	I D I	DATA			Equipment: CME	Height:	30	in.	LAI	N/A BORA	TORY	TEST		l'	
Ĭ.E	-		Count 6 in.)	c Log						In-s	situ	Sie	eve			Tests
DEPTH (FEET)	Sample No.	Drive Bulk	Blow Co (per 6 i	Graphic Log		DESCRIPTION			000	γ _d (pcf)	MC (%)	No.	No. 200	LL	PI	Type of Tests
0 —	0)		ш -			"Asphalt			一) (pci)	(70)	'				
_				XXXXX		l'Aggregate Base Sandstone, (Sespe Formation	n) clavev	to	+							
_						silty, fine to medium grained,	magenta-l	orown	,							
-						slightly moist to moist, moder	ately dens	е								
5 —	1R	7_	9/15/21							112.1	9.5	99.5	29.7	34	11	SA
-	2B				(@ 6'6" light greenish gray with mottling, friable, weakl		atly				99.5	42.7	56	37	SA SE
_						cemented, slightly mois	st to moist	,								CR
10 —	١	7	10/25/29							115.9	9.2	99.7	29.5	49	25	SA
_	3R				(@ 11'6" same as above, slight	tly higher o	lay								DS
_	4B					content						98.5	44.4	59	42	SA SE
- 15 —																
15 —	NR	Z	29/52/40			@ 15' No Recovery			-							
-					TD = 1 Ground	อ ^า ธา dwater or seepage not encour	ntered									
_					Backfil	led with cuttings										
20 —																
_																
-																
25 —																
_																
_																
-																
30 —																
						LEGEND	-				T\	pes of	Tests			
Californ Sample	ia Rir	ng (2.	5 in. OD) SF	PT (2 in. O imple			: Contact ional or ain Conta	ct	CR-	Consolid Corrosio	ation n	MD - Ma PE - Pe	ermeabil	ity	
Californ Sample	ia Rir			⊘ Bι	ılk ımple	Seepage Encountered During Drilling Groundwater Encountered During Drilling	γ _d - Dry De	nsity		EI -	Direct Sh Expansic Hydrome	n Index	SA - Sie SE - Sa TR - Tri	and Equi		
	Note:	This I				erpretations that are valid only for the specific dat derived using visual classification methods and m	e and location of	the boring	g. Subs	urface conditions	vary betv	veen borii				

CHECKER

R. HARTOONIAN

DESIGNER
S. MAOULAWI

Project PCA:				Oastiiii		onitoring W	ell Installed: Yes /No	Los Ang			ואט Deן id Mater						rĸ
Boring No).:	B-7		e(s) Drille 6/4/15			RLM, JJU and K. Burger	Boring Diameter:		G	round evation:	29'		T	e 1		1
Boring Lo	catio	on:		29+00		Drilled by:		Hammer Weight:	140	To	tal epth:	16'6"		Dept			
Latitude 8	k Loi	ngitud	le: 34.	042 & -1	18.567	Drilling Me	ethod: Hollow stem aug t: CME		30	D	epth to Gr	oundwa	ater:	_		edrock 6'	k:
	FII	ELD	DATA				CIVIL	Troight.			LA	BORA	TORY	TEST	ING	<u> </u>	_
DEPTH (FEET)	No.		Count 6 in.)	ic Log							In-	situ		eve Issing			T
E E	Sample No.	Drive Bulk	Blow C	Graphic Log			DESCRIPTION			nscs	γ _d (pcf)	MC (%)	No. 4	No. 200	LL	PI	
0 —				××××	0 - 6'	Asphalt	-t- D										Ť
_					$\overline{}$	Aggrega Sand (a		edium graine	ed.								
_	5 — 1R 2B 1.6/12 9" - 6' Sand, (alluvium), fin medium brownish-g @ 1' large volcanic (5" diameter) @ 2' medium volcal edish-brown, frac moist to moist, der							ose, slightly r	noist								
_								e encountered	d								
5 —	1R	7	1/6/12			•	,	oble encounte	ered	SM	99.4	13.7	91.5	28.7			
_					6' - TD								99.5	65.3	31	14	
-								mottled, slig	iity								
10 —			13/55/68														
-	3R										120.7	4.7	86.4	55.3	28	9	
-	4B					@ 11'6"	oxidized, medium	gray color								4.0	
_	40		38/27/27										98.2	66.2	35	19	
15 —	5R	7									97.9	8.1	90.6	58.0	36	15	
_						@ 16'6"	some oxidation, r	eddish-browr	n			0	00.0	00.0			
-					TD = 1	6'6"	mottling										
20 —					Groun	dwater or	seepage not enco	ountered									
20 —					Backfi	led with o	cuttings										
-																	
_																	
25 —																	
-																	
_																	
-																	
30 —																	
							LEGENI	D				т.	pes of	Toeto			1
Californ	California Ring (2.5 in. OD) Sample Depth to invert						Depth to invert	——— Distinct	Contact onal or			Ty Consolida Corrosior	ation	MD - Ma PE - Pe			/
Californ		ing (3	in. OD)	⊞ Sa Bu Sa			Seepage Encountered During Drilling Groundwater Encountered During Drilling	$\gamma_{\sf d}$ - Dry Dei			DS - El -	Direct Sh Expansio	ear n Index	SA - Si	eve Ana and Equ	alysis	Э
∠ Gample							Ouring Drilling at are valid only for the specific	MC - Moistur				Hydrome		TR - Tri			_

DATE NO INITIALS DESCRIPTION

REVISIONS

Karin L. Burge
No. 2507
CERTIFIED
ENGINEERING
GEOLOGIST

LOS ANGELES COUNTY PUBLIC WORKS WATERWORKS DISTRICT NO. 29, MALIBU

OASTLINE DRIVE 12-II

COASTLINE DRIVE 12-INCH WATERLINE IMPROVEMENTS

BORING LOGS 1-7

PROJ ID WWD2900063 PCA Y5292286A SPEC 29-758 SHEET 9 OF 12